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ABSTRACT 

The accurate estimation of outstanding claims is of key importance to insurers and is 

one of the primary roles of an actuary. Despite this, claims reserving methods that are 

commonly used in practice underutilise the vast amount of data that insurers collect 

from policyholders. Micro-level models have recently gained popularity as they allow 

claim analysis to be conducted at a more granular level and the higher computational 

requirements are considerably less of a problem given modern technological advances. 

Ultimately, this leads to a more accurate estimation of claims reserves which may reduce 

the additional risk margin insurers need to hold. 

A further consideration when calculating reserves is that certain economic and en-

vironmental events can lead to claim intensity fluctuations, resulting in several distinct 

levels of varying claim arrival rates. The use of Markov-modulated Poisson processes to 

capture this type of stochasticity is well documented in the physical science and informa-

tion technology literature. However, there is little literature in an insurance context and 

various issues regarding implementation are yet to be resolved before these models can 

be applied in practice. 

This thesis applies a Markov-modulated Poisson process within a micro-level frame-

work to model claim counts. Adjustments for insurance-related factors such as reporting 

delay, exposure, seasonality and other residual trends are discussed. Analysis is conducted 

to test the accuracy of the expectation maximisation algorithm that is used to calibrate 

the model and a real-world case study is then undertaken to demonstrate the theoretical 

findings. Careful analysis suggests that the MMPP model outperforms the commonly 

used chain-ladder algorithm in terms of prediction accuracy, highlighting the advantages 

of the proposed model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The primary business of insurance is the coverage of contingent liabilities for a premium. 

In the event that these liabilities are ever realised, insurers must ensure that they have 

enough liquid funds available to adequately fulfil their obligations. However, the evalu-

ation of exactly how much money should be held for this purpose is difficult due to the 

stochastic nature of the claims process. Consider the generalised development of a claim, 

shown below in Figure 1.1. 

Figure 1.1: The Claims Process 

At time 0, the policy begins and the policyholder is covered for certain types of 

losses until time T . If a claims event does occur at some point during this period, then 

the cost of the claim needs to be paid out by the insurer. We call the time that such an 

event occurs the “Time of Occurrence” and the time that it is reported to the insurer the 

“Time of Reporting”. These two time points are not the same and can be quite far apart 

depending on the type of risk covered. After the claim is reported to the insurer and 
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CHAPTER 1. INTRODUCTION 

some further processing/investigation time, payments start being made to the claimant. 

It is important to note that claims are generally not fully paid out in one lump sum but 

develop over a period of time. For example, in the case of a worker’s compensation claim, 

rehabilitation can take a significant amount of time. This results in many partial claim 

payments that can vary in severity many years into the future, and the prediction of this 

claims process is thus very complicated. 

Eventually, there is a final payment that is made and at that point, we consider 

the claim closed and the claims process is settled. However, in some cases, claims can be 

reopened due to the emergence of new information or an unforeseen development. If this 

occurs, then there is an associated “Time of Reopening”, after which more partial claim 

payments are made. Finally, we have another settlement event and the case is closed 

again. We note that the time T does not have to fall at the end of this process and is 

only used to determine the claim eligibility in terms of the time of occurrence. If the time 

of occurrence falls between times 0 and T , the claim needs to be fully paid out regardless 

of how long the claim development process takes. 

Each of the components in the described claims process can also differ significantly 

across different insurance lines of business. For example, private motor insurance generally 

has a short reporting delay (which is the time between the occurrence and reporting of 

the claim) while insurance claims that cover risks like asbestos exposure may not be 

reported for many years after the occurrence date. This creates complexities that have to 

be captured by models that are used for reserving these future liabilities. In addition, the 

reporting delay of claims introduces another complication. At the date that the reserve is 

determined (known as the valuation date), there may be claims that have been incurred 

but are yet to be reported to the insurer. These IBNR claims must be included in the 

valuation calculations on top of claims that have been reported but not settled (RBNS 

claims) in order to determine the total outstanding liability of the business. 

Thus, accurate reserving calculations can be a very complex procedure. A natural 

question is “Why is accurate claims reserving important?”. In terms of under-estimation 

of reserves, there are clear consequences when an insurer is not able to meet its obligations. 

Large losses over a short period that are not reserved could lead to insolvency. Even in 

the case where the business does not fail, there are costs associated with financial distress 

such as restricted access to capital sources and closer regulation by governing bodies. 

Reserves are also used as an indicator of whether products are priced correctly. Under-

estimation could reflect inadequate pricing of a business’s insurance products as claims 

are higher than expected. On the other hand, over-estimation of reserves raises its own 

set of issues. Following a similar train of logic to the previous statement, over-estimation 

could reflect over-pricing of an insurer’s products, leading to less market competitiveness. 

2 



CHAPTER 1. INTRODUCTION 

Also, reserves are the largest liability on a general insurer’s balance sheet. For example, 

Suncorp’s outstanding claims liabilities for financial year 2013 (incorporating a risk margin 

that satisfies a 90% probability of adequacy) was $9,514m AUD, which is fairly large 

relative to their total general insurance liabilities of $16,798m AUD (Suncorp Group, 

2013). Thus, the over-estimation of claim liabilities (and hence the required reserves) can 

detriment the company’s perceived financial position. 

In practice, the prediction of future cash flows in general insurance largely utilise 

aggregated run-off triangles. These methods were originally adopted due to their com-

putational simplicity and tractability, which also makes these methods very accessible to 

practitioners in the industry. The main idea behind these procedures is that by assuming 

that the average claim will follow a certain distribution over time, claims data can be 

analysed and projected in order to calculate future liability payments. However, difficul-

ties arise in choosing an appropriate distribution and fitting correct parameters as well as 

choosing what types of data to use (for example, paid or incurred losses). The methods 

also do not provide a natural method of incorporating all of the extra covariate informa-

tion that is collected by insurers. Further, there are other issues that can occur when the 

assumptions that are made by these procedures are violated (for example, Verdonck et al. 

(2009) highlights problems with the influence of outliers in triangular methods). Finally, 

in some cases, the modelling procedure can break down completely due to some of the 

characteristics of the data (see Kunkler, 2004). It is important to note that while fixes 

to these issues have been proposed, they are generally heuristic in nature and cannot be 

applied simultaneously. Hence, while these methods can be robust when the underlying 

assumptions are satisfied, they may not be adequate for situations when this is not the 

case. This is particularly relevant for general insurance, where policies can cover many 

different risks with differing properties. 

A very imporant consideration that is also not taken into account by aggregate 

modelling techniques is sudden changes in the frequency of claims. From a realistic 

perspective, there are many climatic, political or economic variables that could cause these 

shifts, such as dry weather increasing fire risk. To complicate matters, these environmental 

variables may not be observable to analysts, either due to not being included in the data 

sets or due to their own inherent complexities. For example, it is well documented that 

La Niña episodes will greatly increase flood risk in Australia (see Australian Bureau of 

Meteorology, 2012). These hidden variables are being currently being investigated by 

various insurers and reinsurers, as well as by Lloyd’s in the UK (see Lloyd’s, 2010). 

3 



CHAPTER 1. INTRODUCTION 

1.2 Research Motivations 

The key motivation for the use of micro-level analysis is that it provides natural methods of 

incorporating potentially material micro-level information that would generally be missed 

or disregarded by macro-level models. Insurers already collect this information from 

their policyholders and several papers question the use of aggregate modelling when it is 

computationally feasible to make use of the extensive micro-level information (see England 

and Verrall, 2002). It is generally expected that these models will produce more accurate 

claims liability estimates due to the closer fit achieved by using the extra information 

available. Other advantages is that it relaxes some of the more unrealistic assumptions 

that are used in aggregate modelling, such as stochastic independence in the upper triangle 

of incremental claim amounts. The greatly increased sample space also accommodates 

modelling procedures and helps to avoid the issues encountered with aggregate techniques. 

The majority of the literature on micro-level analysis is relatively old but has recently 

been reconsidered due to advancements in technology increasing the accessibility of these 

methods. However, the size of the literature is still quite small and generally theoretical in 

nature with few empirical case studies, particularly from an Australian non-life insurance 

perspective. Further, the focus is on the Poisson process whereas the generalisation to 

doubly stochastic Poisson processes, or Cox processes, provides a beneficial extension as it 

allows for stochasticity in the claims arrival intensity. One of the few papers that discuss 

Cox processes in this context is Avanzi et al. (2015) which employs a shot-noise process 

for this purpose. 

Our primary extension to the micro-level analysis literature in this thesis will be 

through the use of Markov-modulated Poisson processes (MMPPs), which is a class of 

Cox processes that provide a realistic interpretation by allowing for sudden changes in the 

frequency of events. Extensive documentation demonstrates that MMPPs are suitable for 

processes that experience sudden bursts in activity such as web traffic flow (see Scott and 

Smyth, 2003). This is a property that is also observed in claim counting processes but 

the majority of the MMPP theory in financial literature has been focused in risk theory. 

My thesis will examine the use of this model in an insurance context to show that it will 

produce more accurate results when the risk frequency of claims is not homogeneous. 

However, as is the case with micro-level analysis, the current literature is quite the-

oretical in this area with few papers that use empirical analysis to validate theoretical 

findings. Further, issues that will naturally arise in the practical application of such mod-

els are not discussed in the current literature (for example, the heterogeneity introduced 

by a non-constant exposure to risks). This is a significant barrier to the adoption of such 
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models by industry practitioners as it limits the accessibility of the method. My thesis 

will bridge this gap by presenting methods to deal with these issues. We also validate the 

theoretical findings by undertaking a comprehensive empirical case study using real world 

data. By doing so, we hope to justify the proposed advantages of MMPPs in providing 

realism to claims reserving models as well as provide an accessible procedure for industry 

actuaries that can be implemented in using standard software such as MATLAB. We note 

that this approach is not only applicable to a micro-level reserving framework but for any 

methodology that models claim counts under the assumption of independence between 

frequency and severity (and even this assumption can be relaxed, as discussed later on). 

1.3 Thesis Structure 

This thesis is structured in the following manner. Chapter 2 reviews the literature on 

both marked Poisson models and Markov-modulated Poisson processes, which are the 

main concepts used in our research. We outline both the theoretical frameworks for the 

model and the estimation procedures that exist for calibrating the parameters of our 

model. 

Chapter 3 lays out the foundations for the model and introduces the main contri-

butions of this thesis, which is a method for incorporating various real world insurance 

data characteristics in the proposed claims count model. We also detail a procedure for 

simulating and calculating the final outstanding claim numbers. 

Chapter 4 analyses and discusses the chosen calibration method for the Markov-

modulated Poisson process. Tests are conducted using simulated data which aim to 

consolidate the findings in the later empirical case study. Both the assumptions made by 

the model and the accuracy of the calibration method are examined. 

Chapter 5 is the empirical case study and explicitly sets out our adjustments for 

each of the characteristics that are encountered in the data. The final claim count results 

are determined. The performance of the model is also compared with the popular chain-

ladder algorithm 

Finally, we conclude with a summary of the contributions of the thesis in Chapter 

6 and outline interesting and important extensions for our claim counts model. 

We also include an appendix which is split into two sections. The first gives a small 

discussion on the fitting of the severity component of the claims reserving model. The 

second provides the major MATLAB codes that were used in modelling the case study 

from Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is split up into sections which describe key areas of research. The first section 

describes the current aggregate modelling techniques that are commonly used in practice. 

Section 2 discusses various issues that may be encountered when using these aggregate 

techniques. Section 3 will explore the current literature on marked Poisson processes 

while Section 4 introduces the theoretical background behind Markov-modulated Poisson 

processes and provides the fundamental results that we will use in our model. Finally, 

Section 5 introduces the concepts behind operational time adjustments to Poisson point 

processes. 

2.1 Aggregate Modelling Algorithms 

In this section, we introduce some of most popular aggregate reserving procedures for 

general insurance. The common procedure in all of these methods is that they begin by 

separating the claim payments into periods, usually accident years (denoted as i) and 

development years (denoted as j). Assuming that the data is complete, we will have an 

equal number of accident years and development years, and we write this number as n. 

It is implicitly assumed by these models that there are no more developments after the 

nth period. 

We further denote the accumulated claims amount (either counts, paid or incurred) 

at accident year i and development year by Ci,j , for i = 1, . . . , n and j = 1, . . . , n. We 

can then arrange these amounts into a triangle by accident year and development year 

along the columns and rows respectively. Clearly, we will not have data for the points 
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CHAPTER 2. LITERATURE REVIEW 

where j > i and thus, the bottom right half of this triangle must be projected from the 

upper left of the triangle. The lower triangle is the outstanding claims amount that we 

are trying to estimate. 

It is important to note that the algorithms described here are deterministic in nature. 

Various extensions to stochastic algorithms have been proposed. For example, a very 

popular stochastic model is the distribution-free chain ladder model described in Mack 

(1993). An important benefit of the extension is that the prediction uncertainty in the 

outstanding claims can be quantified and we can obtain estimates for the other moments, 

whereas the algorithms below can only provide central estimates. However, we introduce 

the deterministic methods below due to their simplicity and tractability, and our current 

analysis only requires the first moment for comparison purposes. 

2.1.1 Chain-ladder algorithm 

The chain-ladder algorithm assumes that the claims develop independently from their 

accident year, means that the factors that we apply only need to account for the de-

velopment period over which we are projecting. It also assumes that cumulative claims 

amounts are proportional to the cumulative claim amount in the preceding period. We 

call this proportion a development factor between the two development years and write 

this formally as 

E [Ci,j+1|Ci,1, . . . , Ci,j ] = fj × Ci,j , (2.1) 

where fj are the development factors between each development year. The factors fj are 

estimated by P n−j Ci,j+1
f̂CL = Pi=1 , (2.2)j n−j 

i=1 Ci,j 

which is essentially the sum of all known claims for development period j + 1 divided by 

the claims from development period j, ignoring the years where there are unknown cells 

for either development period. Thus, we can apply the following formula across all the 

unknown cells in order to estimate their values: 

Ci,j+1 = fj × Ci,j . (2.3) 

An important (and somewhat limiting) characteristic of the above algorithm is that 

it doesn’t incorporate any dependencies between accident years. Also, as implied above, 

there are various stochastic extensions to this algorithm such as Mack’s chain-ladder 

model and the over-dispersed Poisson chain-ladder model (see Wüthrich (2015) for further 

details). 
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2.1.2 The Bornhuetter-Ferguson algorithm 

The Bornhuetter-Ferguson (BF) algorithm (Bornhuetter and Ferguson, 1972) applies a 

similar method to Mack’s chain-ladder method but also incorporates expected ultimate 

claims using an external factors such as expected loss ratios. The final aim is to calculate 

ultimate claims for each accident year and the relevant formula for the BF method is � � 
1 

CBF ˆ
i,n = Ci,j + 1 − Ĉi,n, (2.4)

Fi,j 

where the factors Fi,j are the development factors from period j until period n. These 

factors are calculated externally and could be determined using the chain-ladder factors 
ˆfrom Section 2.1.1. In a similar vein, Ci,n is also calculated externally using quantities 

such as loss ratios. 

Generally, the BF model is used for highly leveraged lines of business, where the 

standard chain-ladder approach would be to volatile to give reasonable estimates for 

immature years. In this sense, the model can also be seen as a credibility weighted model. 

However, the subjective nature of calculation of the various Ĉ terms here are a significant 

issue. 

2.1.3 Other aggregate methods 

There are other methods available that take different approaches to calculate reserves 

such as the Cape-Cod method which estimates the a-priori loss ratio in the previous 

Bornhuetter-Ferguson method using a factor for exposure and claims to date. There 

are also methods which combines the reserving procedures previously mentioned, such 

as the Benktander-Hovinen method which is essentially uses a weighting factor with the 

assumed proportion of reported and IBNR claims, which removes the subjectivity of the 

Ĉ estimates. For descriptions of these more complex methods, we refer to Dahl (2003). 

8 
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2.2 Limitations of Macro-Level Modelling 

While the relative simplicity and low processing cost of macro-level modelling makes it an 

attractive option when valuing future cash flows, there exist well documented issues with 

the procedure. We present some of the problems that can arise with these methods when 

the assumptions underlying the model are not satisfied. Again, while various works have 

attempted to adjust the models in order to overcome these concerns, the amendments 

can be complex and may not work simultaneously. This exposes a potential inability of 

these aggregate representations to capture the intricacies within claim liabilities. A major 

motivation of our research is that micro-level modelling will naturally avoid these com-

plications by incorporating more information and relaxing some of the rigid assumptions 

that are made by macro-level modelling procedures. 

2.2.1 Problems with prediction accuracy and precision 

While macro-level modelling techniques will produce correct results under a homogeneous 

data structure, any deviations from homogeneity will result in inaccuracies in the final 

output. we detail some of the characteristics in macro-level models that can result from 

heterogeneous data below. 

2.2.1.1 Lack of robustness 

it is also know that the chain-ladder method is not robust and outliers can have a sig-

nificant impact on the final outstanding claim amounts estimated by the model. The 

following example is borrowed from the Verdonck et al. (2009): 

Figure 2.1: Triangle of Claims Data 

The upper triangle shown in the above table shows the observed data (including 

IBNR) and satisfies the chain-ladder assumptions because we can see that the ratios 
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between the columns are the same for each accident year. Figure 2.2 shows what the 

bottom triangle looks like after being projected using the appropriate chain-ladder factors. 

The total reserves calculated in this case is 7,482.5. 

Figure 2.2: Claims Data and Projections 

Finally, the claim amount in accident year 1 and development period 2 (i.e. C1,2) 

is multiplied by 10 so that it becomes an outlier. We project the triangle again using the 

chain ladder method and we obtain Figure 2.3: 

Figure 2.3: Claim Project with an Outlier at C1,2 

The total outstanding liability in this case is 15,842.49, which is more than twice 

of the our previous amount without the outlier. Thus, we can see that the chain-ladder 

method is not very robust in the presence of outliers. As an alternative, the use of micro-

level data allows for the explanation and incorporation of the outlying using other external 

factors. 

2.2.1.2 Large prediction errors 

England and Verrall (2002) demonstrate several examples of stochastic claims reserving 

using various models such as Mack’s chain-ladder model, the negative binomial model, 

the over-dispersed Poisson model. In these cases, they find that the prediction error of 
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these models can be “disappointingly large”, and give many possible explanations for this 

observation. Firstly, the model that is used can be a poor fit of the data which would 

have clear consequences on the prediction error. However, the authors state that the size 

of these errors is 

“entirely consistent with the small sample of data that is available in run-off 

triangles.” 

Thus, there is an inherent issue with the aggregation of claims as it greatly reduces the 

sample size which can increases prediction error. There is a clear benefit here of using 

micro-level data to model claims reserves. 

2.2.1.3 Mean-regressing bias 

Halliwell (2007) highlights the problem of bias within the results the chain ladder method, 

as well as the Bornhuetter-Ferguson and additive methods for claims reserving. While 

there is no specification as to the direction of the bias, the author reference the simulations 

by Stanard (1985), which show that in general, the chain-ladder method over-predicts the 

outstanding liabilities in the run-off triangles. Their analysis concludes that the chain-

ladder method is biased, with the bias most commonly being mean-regressing, due to 

earlier cumulative claim amounts being used as proxies for the exposure associated with 

the triangle. This is validated when the author adjusts for exposure in the Bornhuetter-

Ferguson and additive models which results in reduced prediction error. This bias is also 

rigorously demonstrated in Taylor (2003). We note that this bias is specific to the chain 

ladder method and thus would not be present in micro-level models. 

2.2.2 Problems with practical implementation 

2.2.2.1 Issues with non-positive cells 

Kunkler (2004) reveals a practical issue that can occur when modelling using an incremen-

tal claims triangle instead of the cumulative triangle presented previously. An assumption 

that is usually made is that each cell is positive or in some cases, non-negative. If there are 

a large number of zeroes in the data (as may be the case for later development periods), 

this will affect the calculation of the development factors. However, this many not be the 

case in practice due to considerations such as recovery values and over-payment of claims. 

This is especially relevant for reinsurers, where the incremental triangle of claims may 

have significant numbers of zero cells for excess layers. On the other hand, micro-level 

models do not encounter issues with non-positive transactions. Indeed, several proposed 

models (for example Larsen (2007)) specifically incorporate such transactions into the 
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modelling procedure. 

2.2.2.2 Combination of different sources of information 

There is a practical question of whether to use paid or incurred claims in the triangle 

representations. Incurred claims are calculated as the amount that has been paid with a 

case estimate of the outstanding amount added on top. These case estimates are done by 

case managers and thus, can be relatively subjective. Posthuma et al. (2008), Quarg and 

Mack (2004) and Merz and Wüthrich (2010) all propose methods to combine paid and 

incurred losses into a comprehensive model but their differing methodologies imply the 

inability of aggregate reserving methods to provide a natural solution to this problem. 

While this issue is still somewhat relevant for micro-level models, it is feasible to model 

both the paid and incurred claims by considering both payments and changes in case 

estimates within a single framework. 

2.2.2.3 Inconsistency of reserve and premium calculations 

Parodi (2014) points out that premium determinations are done using micro-level data. 

For example, when purchasing private motor insurance, insurers will use information 

such as the age of the policyholder to price their premiums. This is misaligned with 

reserving methodologies that are done by using aggregate techniques, where all the claims 

regardless of age would be summed into the triangle representations discussed previously. 

By using micro-level models, we can naturally incorporate the factors that are considered 

in premium calculations into reserving models and resolve this inconsistency. 

2.2.3 Lack of specification of underlying processes 

A final issue that is examined in Taylor and McGuire (2004) is that there is no theoreti-

cal framework behind the chain-ladder algorithm when applied in practice. The authors 

highlight that corrective action for the errors that are generated by this method may be 

difficult to diagnose and rectify as there is no specified underlying distribution. Because 

of this fact, the authors label the method as “phenomenological”, meaning that the pro-

cedure reflects little of the underlying mechanisms that govern claim payments. The key 

observation here is that the chain ladder model proposed by Mack (1993) is distribution-

less. Apart from the previous problems, this can also cause other issues, such as difficulty 

in calculating meaningful estimates of various statistical measures (for example, in the cal-

culations of moments of order higher than 2). This is in stark contrast to the micro-level 

model that we present in this thesis which has a well defined theoretical foundation. 
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2.2.4 The effect of macro-level modelling issues 

Ultimately, the issues presented above cause increased prediction error in the macro-level 

models. This error can arise in two forms, either bias or high variability in the final 

results. In the case of the former, this could lead to long-term under/over-estimation of 

the reserves. The latter case is a significant issue because reserving calculations are done 

relatively infrequently in practice. This is due to the large amount of work that is involved 

with practically implementing macro-level modelling procedures. 

An alternative way to view the prediction error is to decompose it into model and 

parameter error. In the case of the latter, ad-hoc adjustments have been suggested and 

implemented in practice but this deviates from the theoretical framework that has been 

established and the resulting procedure has no root in a well-specified model (as addressed 

in Taylor and McGuire (2004)). In terms of model error, it seems like the natural (and 

perhaps singular) way to resolve the issues is to use micro-level data. This can bring many 

benefits such as a lower variability in the outputs of the model, which arises from the use 

of more information in the modelling procedure. This would mean that a company would 

be able to hold less capital as the quantile amount required from a regulatory standpoint 

would be lower. For example, from an Australian perspective, the Value at Risk amount 

required by the APRA Prudential Standards would be lower when the model produces 

results that are less variable. Thus, an example of an advantage provided by micro-level 

techniques may be lower regulatory capital requirements due to the increased precision in 

the model results. 
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2.3 Micro-level Analysis 

The following section explores the current literature on micro-level analysis and investi-

gates/compares the differing approaches proposed by various authors. The main method 

we will be implementing extends the framework established by Norberg (1993), which 

employs a marked Poisson process in order to conduct micro-level analysis. We begin 

with an introduction to the basic notation and definitions that will be used. 

2.3.1 Counting processes 

A counting process {N(t); t > 0} is a stochastic process with values that are increasing 

positive integers. These processes are suitable for modelling claim counts. A well known 

counting process for this purpose is the Poisson process, described below. This process 

has several attractive properties such as independent and stationary increments as well as 

the Markov property. It is also fully defined by one intensity parameter and has a closed 

form solution when calibrating this parameter using maximum likelihood methods. 

We are interested in a generalisation of the Poisson process: the doubly stochastic 

Poisson process, or Cox process. This has been applied extensively in many financial 

areas including credit risk and mortality (see Lando, 1998; Biffis, 2005). These processes 

allow for increased modelling flexibility due to the stochasticity of the claim intensity 

parameter, which allows inhomogeneity due to various factors such as seasonality to be 

captured by the model, leading to more robust and realistic results. 

In the following sections, we provide formal definitions for the concepts discussed 

above. 

2.3.1.1 Poisson distributions 

Discrete distributions are a useful tool for modelling claim counts over a certain period 

of time. A popular distribution that is used for this purpose is the Poisson distribution, 

defined below. 

Definition 2.3.1 A discrete random variable X is Poisson distributed with intensity 

parameter λ if 

Pr (X = x) = e −λ λ
x 

, x = 0, 1, 2, . . . (2.5) 
x! 

It can further be shown that 

E [X] = λ and Var [X] = λ. (2.6) 
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2.3.1.2 Poisson processes 

A Poisson process models the occurrence of a series of random observations over a specified 

time period using the above Poisson distributions. Let {N(t), t ≥ 0} be the number of 
observations by time t, and let N(0) = 0. Then for a time interval (t, s], N(s) − N(t) 

is the number of observations in the interval. It is assumed that claims cannot occur 

simultaneously. Independent and stationary increments are also assumed, as described 

below. 

1. A Poisson process has independent increments if the increments N(s) − N(t) and 

N(u) − N(v) are independent random variables, given that the time intervals (t, s] 

and (u, v] do not overlap. 

2. A Poisson process has stationary increments if the distribution of the increment 

N(s + t) − N(t) is independent of t. 

Using the above definitions, a Poisson process is formally defined as the following: 

Definition 2.3.2 Under the assumptions specified above, a process is a Poisson process 

if it has independent and stationary increments and the process has a constant intensity 

parameter λ > 0 such that for s > t, N(s) − N(t) is Poisson distributed with intensity 

parameter λ(s − t), i.e. 

(λ(s − t))k 
−λ(s−t)Pr (N(s) − N(t) = k) = e , k = 0, 1, 2, . . . (2.7)

k! 

The Poisson process also has the Markov/memoryless property, which means that 

given the present state of the process, future states of the process are independent of past 

states. This is expressed more formally as 

Let ({Ft} , t > 0) be the filtration of a probability space (Ω, F , P) . A Poisson process 

with filtration {Ft} is said to have the Markov property if for each s > t, 

Pr (N(s) = k|Ft) = Pr (N(s) = k|N (t) = l) , (2.8) 

for some integers k, l where k > l. 

2.3.1.3 Inhomogenous Poisson Processes 

We can generalise the Poisson process by allowing the intensity parameter λ to change 

over time (i.e. λ (t)). In this case, the process is known as an inhomogenous Poisson 
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process. We define a mean value function as follows: Z t 
m(t) = λ(s)ds (2.9) 

0 

Then the process N(t) with the independence, stationarity and Markovian properties 

described above and a changing intensity parameter λ(t) will be an inhomogeneous Poisson 

process and at each time t, N(t) will have have a Poisson distribution with intensity m(t), 

i.e. 

−m(t) m(t)
k 

Pr(N(t) = k) = e , where k = 1, 2, 3... (2.10)
k! 

Various literature demonstrates the benefits of using an inhomogeneous Poisson 

process to fit count data relative to the simple homogeneous Poisson case. For example, 

Mikosch (2009) demonstrates using Danish fire insurance data that a Poisson process with 

varying intensity fits the data significantly better than the constant intensity counterpart. 

2.3.1.4 Doubly stochastic Poisson processes 

A further generalisation can be made if we allow λ(t) itself to be a stochastic process. 

In this case, the counting process is known as a doubly stochastic Poisson process or a 

Cox process. This is a very useful generalisation for insurance data, as it can be argued 

that factors that can cause inhomogeneity in claim arrivals (such as weather effects or 

seasonal impacts) may be considered stochastic in nature. Thus, the Cox process provides 

a realistic adaptation of the standard inhomogeneous Poisson process in the context of 

insurance data. Avanzi et al. (2015) provides an example of the benefits of such an 

approach through the use of a shot-noise stochastic intensity. We discuss this paper in 

greater depth in Section 2.3.8.4. 

16 



CHAPTER 2. LITERATURE REVIEW 

2.3.2 Claim information 

We can represent the basic information necessary to implement a micro-level model as 

the space {(Ti, Zi)} , where n is the total number of claims in the observed period. i=1,...,n

Looking at a single claim, we write 

(T, Z) = {T, U, {v 0, Y (v 0); 0 ≤ v 0 < V } , V, Y } , (2.11) 

where 

‹ T is the time of occurrence 

‹ U is the notification delay 

‹ v0 are the times of the partial payments, beginning from the notification time 

‹ Y (v0) are the cumulative payments up until time T + U + v0 

‹ V is the time of the last partial payment, or the settlement date 

‹ Y = Y (V ) is the ultimate claims cost 

A visual representation of how the cumulative claim payments Y (v0) develop over time 

is shown in Figure 2.4. 

Figure 2.4: Claim occurrence and development 

2.3.3 Position dependent marked Poisson processes 

In our model, we build on the fundamental framework in Norberg (1993), which we outline 

in the following section. Assume that claims occur as a non-homogeneous Poisson process 

with intensity w(t) at time t ≥ 0, where w(t) is the risk exposure per time unit at time 

t. This gives us independent increments in the claims counting process N(t) which is 

determined by the occurrence epochs Tt, where Tt = inf {t; N(t) ≥ t}. Also, we have that 
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U is defined as the waiting time from occurrence until notification to the insurer, and V 

is the waiting time from notification until final settlement of the claim. We let random 

elements {Z(Tt)} t≥0 be mutually independent and independent of the counting process 

{N(t)}t≥0. 

The distribution of Z(t) is denoted as PZ|t and we use these elements to describe the 

individual claim developments Zt = Z(Tt) for t = 1, ..., N . Thus, we obtain the marked 

Poisson process with intensity {w(t)}t≥0 and position dependent marking by {PZ|Tt }t≥0, 
i.e. 

{(Tt, Zt)} ∼ Poisson(w(t), PZ|Tt ; t ≥ 0). (2.12)1≤t≤N 

Let Yt be the individual final claim amount for a claim that arrives at time t. We 

derive the marginal distribution Py from the joint distribution PT,Z (dt, dz) to obtain R 
w(t)PY |t(dy) dt 

PY (dy) = t>0 R∞ . (2.13) 
0 w(t) dt 

We then define a position dependent marking of the marked Poisson process using 

the definition from Last and Brandt (1995): 

Definition 2.3.3 A marked Poisson process Φ = {(Tn, Xn)} is a position depen-n=1,...,N 

dent marking of Φ̄ = {Tn} if {Xn} are conditionally independent given Φ̄n=1,...,N n=1,...,N 

and � � 
Pr Xn|Φ̄ = G (Tn, dx) , (2.14) 

where G is some stochastic kernel from R+ to X. 

Using these results, we have that the total claim amount X is a generalised Poisson R∞
variate distributed as Poisson( 

0 w(t)dt, PY ). 

2.3.4 Claim decomposition by development category 

2.3.4.1 The decomposition result 

A key result provided by Norberg (1993) is the decomposition of the claim space into 4 

mutually exclusive and exhaustive categories: covered but not incurred (cni), incurred but 

not reported (inr), reported but not settled (rns) and settled (s). The total outstanding 

amount XO is the main quantity that we wish to predict each time τ , and comprises of 

the outstanding claims reported but not settled Xorns and the total of Xcni and X inr 

which we define as Xnr . Using these definitions, we obtain from Norberg (1993) that the 
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component claim processes above are independent and that for g = cni, inr, rns, s, � � 
{(Tt

g, Zt
g)}1≤t≤Ng ∼ Poisson wg(t), P Z

g 
|t; t ≥ 0 , (2.15) 

with 

wg(t) = w(t)PZ|t {ξg} , (2.16)t 

and 
PZ|t {dz}

P g 
Z|t {dz} = , z ∈ ξt

g , (2.17)
PZ|t {ξg}t 

where ξt
g denotes the set of developments that produce a claim at time t in category g. 

2.3.4.2 Outstanding claims liability calculation 

Norberg (1993) applies the decomposition result above to get an expression for the out-

standing claims liability. At time τ , the outstanding RBNS claims are equal to 

X 
Xorns = (Yi − Yi (τ − Ti − Ui)) , (2.18) 

1≤i≤Nrns 

while the not reported claims are equal to 

X 
Xnr = X inr + Xcni Y nr = i . (2.19) 

1≤i≤N nr 

Our appropriate estimate for the expected outstanding claim liabilities mXO is thus the 

sum of the first moments mXorns|Fτ + mXnr , where Fτ represents the information available 

by time τ . We have that ZX ∞ 

mXorns|Fτ = (y − yτ )PY rns |Ti,ui,yi (dy), (2.20)
i 

1≤i≤Nrns 0 

where yτ = Yi − Yi (τ − Ti − Ui). Also, we note that 

� � 
w nr(t) = w(t) 1 − PU |t(τ − t) , (2.21) 

and that R 
PU,Y |t(du, dy)

P nr u>τ−t 
Y |t(dy) = , (2.22)

1 − PU |t(τ − t) 
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which gives that Z Z 
nr(t)mXnr = w yP Y

nr 
|t(dy)dt (2.23) 

t>0 y>0Z Z Z 
= w(t) yPU,Y |t(du, dy)dt. (2.24) 

t>0 u>τ−t y>0 

2.3.5 General claim decomposition 

An important generalisation to the decomposition result above is provided by Norberg 

(1999). Firstly, partitioning the claim space into mutually exclusive and collectively 

exhaustive categories will produce similar independence results to the decomposition by 

development categories. Formally, we obtain component g-claims which are independent 

with � � 
{(Tt

g, Zt
g)}1≤t≤N g ∼ Poisson wg(t), P Z

g 
|t; t ≥ 0 , (2.25) 

where 

wg(t) = w(t)PZ|t {ξg} , (2.26)t 

and 
PZ|t {dz}

P g 
Z|t {dz} = , z ∈ ξt

g , (2.27)
PZ|t {ζg}t 

for any finite set of categories g = g0,g1, g2, . . . , gq. Other formulae corresponding to the 

results above can also be derived in a similar manner to the previous section. This general 

decomposition allows the model to analyse data using various factors of interest such as 

claim amount, franchise, reinsurance, calendar year and year of notification. It is also 

possible to measure the effect of interactions by decomposing across multiple factors, as 

demonstrated by Hesselager (1995) in the case of calendar year and year of notification. 

2.3.6 General considerations for modelling claim developments 

The time dependence within the generic mark Z = (U, V, Y, Y 0) can be due to various 

trends in risk conditions which can be accounted for by parametrisation and scaling. 

Thus, it is reasonable to assume independence with respect to t, so that we can write the 

distribution of the generic mark Z as PZ . The (U, V, Y ) components can be thought of 

as the primary characteristics of the claim and the cumulative partial payments Y 0 are 

dependent on these characteristics. Thus, an intuitive approach to modelling PZ is to first 

determine the marginals of (U, V, Y ) , which is made easier by the decomposition result 

above. We can then determine the conditional distribution of Y 0 given (U, V, Y ) . 
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2.3.7 Decomposition results using intensity measures 

We can rewrite the results in Section 2.3.4.2 in a more interpretable format, as shown in 

Jin (2013). Using the notation from the previous sections, we can express the distribution 

of the mark in Equation (2.12) as 

PZ|T = PU |T × PD|T,U , (2.28) 

where Z = (U, D) with U as the random process for the reporting delay and D is the 

random development process associated with the claim (i.e. the partial payments). Using 

this expression, the claims are modelled as random elements in the claim space 

C = [0, ∞] × Z = [0, ∞] × [0, ∞] ×D (2.29) 

with intensity measure 

λ(dt) × PU |T (du) × PX|T,U (dx). (2.30) 

2.3.8 Implementation and extensions 

There are a small number of papers in the literature on individual claims analysis that 

provide a demonstration of how to implement micro-level models in practice using the 

framework by Norberg, described above. In these papers, the various authors (Larsen, 

2007; Antonio and Plat, 2013; Jin, 2013; Avanzi et al., 2015) also provide some useful 

extensions in terms of the distributions and covariates that are used. The following 

subsections will describe the key contributions of their papers. 

2.3.8.1 Larsen (2007) 

Larsen (2007) models the development of incurred losses by using the decomposition 

result in Section 2.3.5 in order to separate the claims space by characteristics such as 

line of business and claim type. Larsen firstly models the claim arrival times T by using 

parametric assumptions. In this step, he also incorporates seasonality by partitioning 

each period into seasonal units of time, and the parametric claim arrival times will be a 

function of a parameter representing the seasonality effect and a parameter representing 

the arrival rates for an accident year, i.e. 

λ(t) = λiσm, (2.31) 
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where m is the effect of seasonality in the mth seasonal period and λi is the risk frequency 

in accident year i. 

The author then employs another parametric approach to specify the conditional 

distribution of the reporting delay U and then further iterates this approach by specifying 

the conditional distribution of the claims developments (including the partial payment 

frequency V and severity Y ) given {T, U} . The severity of these partial payments are 

modelling using an extreme value approach, where losses smaller than some threshold L 

are modelled using a Gamma distribution while losses larger than L use a Generalised 

Pareto Distribution. 

A key contribution of this paper is that Larsen relaxes independence assumptions 

between the various claim components {T, U, V, Y } by using a regression approach and 

incorporating the components as covariates. Various other covariates of interest are also 

suggested such as case estimates but are not implemented. 

2.3.8.2 Antonio and Plat (2013) 

Antonio and Plat (2013) use a similar approach to Larsen (2007) but use probability 

distributions instead of fitting functions to some of the claim components such as arrival 

times. Different distributions are also explored and a key insight in this paper is that the 

piecewise combination of distribution functions may be necessary for components such as 

the reporting delay. In this specific case, the author fits a Weibull distribution with 9 

degenerate components representing the initial 0-8 days. However, this paper does not 

allow for any dependency structures within the components of the claims process nor any 

variation in the claim frequency due to trends such as seasonality. 

Another key contribution in this paper is the introduction of the three different 

event types that can occur in the claim development process for the partial payments: 

Payment without settlement, settlement without payment and payment with settlement. 

This mutually exclusive and collectively exhaustive set of events assists in the simulation 

of the final results. The use of hazard rates corresponding to these events allows for a 

relatively uncomplicated integration of this decomposition into the micro-level analysis 

framework by Norberg (1993) due to the Poisson nature of the partial claim arrivals. 

These hazard rates are modelled using a piece-wise constant function as this allows for 

closed form results but a Weibull distribution is also dicussed briefly. 

2.3.8.3 Jin (2013) 

Jin (2013) builds on the procedure used by Antonio and Plat (2013) and a key contribution 

of this paper is that it introduces two covariates that is commonly available in real world 
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general insurance data sets: 

1. The claim status indicator 

2. The initial case estimate 

The inclusion of these covariates in the payment severity process through a linear 

model in the parameters of the chosen severity distribution allows the micro-level infor-

mation to be incorporated into the claims development process. For example, the claim 

status indicator will serve as a proxy for the information that is incorporated in the model 

as the development has not yet occurred in the claims process. The initial case estimate 

would also be a good indicator as to the expected values that would be paid out in each 

partial payment. 

Jin (2013) also extends the linear modelling approach to the hazard rates, so that 

they can be written as 

hi,k (t) = h(0) 
k (t) exp (x 0α) , (2.32) 

where the covariates are the accident years so that the effect between accident years 

on the hazard rates can be incorporated. 

2.3.8.4 Avanzi et al. (2015) 

Avanzi et al. (2015) uses a comparable approach to our proposed model by modelling 

claim frequency using a Cox process which assumes an inhomogeneous claim intensity 

over time. This intensity is modelled in this paper using a shot-noise process where there 

is an initial jump in the claim frequency before it decays at an exponential rate. This 

provides a realistic extension to the procedures by the authors in the previous subsections 

and is appropriate where there are events that cause sudden increases in the probability 

of claim occurrences or where there are sudden fluctuations in the intensity rate. The 

shot-noise approach also allows for autocorrelation in the claims process, which is not 

considered by the previously discussed papers. 

A key contribution of this paper is the allowance for the stochastic reporting delay in 

the intensity parameters, in order to incorporate the fact that there are claims that have 

occurred but not yet been reported to the insurer (IBNR). These claims should be included 

in the modelling process but are unobservable at the time of valuation. The estimation 

of the unobservable intensity is done after employing a Reversible Jump Markov Chain 

Monte Carlo filtering algorithm to separate the effects of the reporting delay and the shot 

noise process. We aim to adapt this procedure to the Markov-modulated Poisson process, 

defined below. 
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2.4 Markov-modulated Poisson Processes 

By assuming that the risk intensity parameter can be represented by an unobservable 

Markov chain, we can allow for changes in the frequency of claim occurrences over time. As 

previously stated, this provides realism to the claims reserving model because in practice, 

there are unobservable environmental variables that can cause regime-switching in the 

risk frequency of claims. 

2.4.1 Hidden Markov models 

A hidden Markov model (HMM) is a model where there exists a Markov chain with 

underlying states {Mi} that are not directly observable. Instead, it is only possible to 

observe another stochastic process {Yi} , which depends solely on the {Mi} terms. We 
can define this more precisely as the following: 

Definition 2.4.1 A hidden Markov model is a bivariate discrete process {Mi, Yi} where i≥0 

{Yi} is a sequence of independent random variables that have a conditional distribution 

that only depends on the unobservable Markov chain {Mi} . 

For a discrete time hidden Markov model, a simple representation is provided in 

Figure 2.5 below, where we assume the Markovian property on the states M at time t. 

The state space sequence over time {M(t); t ≥ 0} is not observable but we can observe 

their effect on a corresponding process {Y (t); t ≥ 0} . 

Figure 2.5: A simple hidden Markov model 
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2.4.2 Markov-modulated Poisson processes 

A doubly stochastic Poisson process, or Cox process, is a Poisson process where the 

intensity parameter λ(t) is also a stochastic process. We are interested in the Markov-

modulated Poisson process (MMPP), where the intensity is controlled by a hidden continuous-

time Markov chain with a finite state space. Let the Poisson arrival rates be {λi} , where i = 

1, 2, . . . , r and let the generator matrix Q of the Markov chain be 

⎤⎡ ⎢⎢⎢⎢⎢⎣ 
−q1 q12 . . . q1r 

q21 −q2 . . . q2r 
. . ... . . ... . . 

qr1 qr2 . . . qr 

⎥⎥⎥⎥⎥⎦ , (2.33) 

where X 
qi = qij . (2.34) 

j 6=i 

We also define ⎤⎡ ⎢⎢⎢⎢⎢⎣ 
λ1 0 . . . 0 

0 λ2 . . . 0 
. . ... . . ... . . 

0 0 . . . λr 

⎥⎥⎥⎥⎥⎦ Iλ = diag (λ1, λ2, . . . , λr) = (2.35) 

Tand λ = (λ1, λ2, . . . , λr) . 

In the case where Q and Λ is independent of time t, the MMPP is said to be 

homogeneous and a steady state vector exists such that πQ = 0 and πe = 1. 

2.4.2.1 MMPP’s as Markov renewal processes 

A Markov-modulated Poisson process is a Markov renewal process, as defined below. 

Definition 2.4.2 Consider a set of random variables (λt, Xt) where λt is the state of the 

Markov Chain at time t and Xt is the inter-arrival time between the (t − 1)th and tth 

event. Then the Markov chain is a Markov renewal process if 

Pr (Xt+1 ≤ t, λt = j|λt, Xt, λt−1, Xt−1, . . . , λ1, X1, λ0) = Pr (Xt ≤ t, λt = j|λt, Xt) . 

(2.36) 

We can see that the process {(λt, Xt)} can be generated by first choosing some 

starting state λ0 according to some starting distribution s and then randomly choosing 

(λ1, X1) according to the equation above. 
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2.4.2.2 Fundamental results of Markov-modulated Poisson processes 

Meier-Hellstern (1987) shows that the transition density matrix of a Markov renewal 

process is equal to 

f (m) = exp {(Q − Iλ) m} Iλ, (2.37) 

which gives the transition probability matrix of the unobservable Markov Chain with 

states {λi} as 

Z ∞ 

f (m) dm = (Q − Iλ)
−1 Iλ. (2.38) 

0 

Rydén (1994) demonstrates that for each (Q, Λ) , we have that all states i in the 

transition probability matrix where λi > 0 form an irreducible, aperiodic and closed 

subclass. The remaining states are all transient. A consequence of this result is that 

the stationary distribution of the transition probability matrix π is unique and for each 

initial distribution s, we have that Pr (λt = i) → πi. This simplifies the procedures for 

parameter estimation that are discussed later. In the following results, we will assume 

that the Markov chain is already stationary. 

2.4.3 Switched Poisson Processes 

The simplest non-trivial Markov-modulated Poisson process has two state spaces and 

this process is known as a switched Poisson process. In this case, we can obtain closed 

form expressions for the transition densities f given the state spaces {λ1, λ2} and tran-

sition intensities {µ1, µ2} . Define a parameter φ = {λ1, λ2, µ1, µ2} . Then, Rydén (1994) 

demonstrates the following results: 

1. The transition densities of the observations {Xi} arei=1,2 

λ1(S2−θ2)(a) f11 (x) = −λ1(S2−θ1) exp (−θ1x) + exp (−θ2x)D D 

(b) f 12 (x) = −λ2

D
µ1 exp (−θ1x) + λ2

D
µ1 exp (−θ2x) 

(c) f 21 (x) = −λ1

D
µ2 exp (−θ1x) + λ1

D
µ2 exp (−θ2x) 

(d) f22 (x) = −λ2(S1−θ1) exp (−θ1x) + λ2(S1−θ2) exp (−θ2x)D D 

2. The transition probability matrix of the hidden Markov chain {Mi} isi=1,2 ! 
S2 µ1λ1 λ2

P = K K ,
µ2 S1λ2λ1 K K 
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where 

S1 = λ1 + µ1, 

S2 = λ2 + µ2, 

K = λ1λ2 + λ1µ2 + λ2µ1,q
D = (S1 + S2)

2 − 4K, 

(S1 + S2 + D)
θ1 = ,

2 
(S1 + S2 = D)

θ2 = ,
2 

from which it follows that the stationary probabilities are 

� � 
λ1µ2 λ2µ1π = . 

λ1µ2+λ2µ1 λ1µ2+λ2µ1 

Thus, the only parameters left to estimate are the state spaces and transition inten-

sities within our parameter φ = {λ1, λ2, µ1, µ2} . It is also possible to derive expressions 
for the above in MMPPs of higher order but the complexity of the expressions would be 

best expressed in the matrix representation seen in Section 2.4.2.1. 

2.4.4 Parameter Estimation in MMPPs 

The literature on parameter estimation for the state spaces and transition intensities 

in Markov-modulated Poisson processes generally discusses two approaches: a moment 

based approach and a maximum likelihood approach. A key result proved in Rydén 

(1994) is that the maximum likelihood estimator is consistent so the estimator converges 

in probability to the true value. In our model, the convergence property is assisted by 

the large sample size available for modelling. Thus, we will use a likelihood approach 

to estimate the parameters in our MMPP. There are several documented methodologies 

for this procedure. In the following section, we will present the basic framework for 

maximum likelihood estimation and briefly detail the main methods that are available in 

the literature. 

Firstly, denote φ = (Q, Iλ) as a parameter within the parameter space 

Φ = {φ : Q is irreducible and λi > 0 for at least one i} . (2.39) 

Assuming that {Xi} is a stationary process, we have that the likelihood of the parameter 

φ for the sequence of observations {Xi} isi=1,...,n 
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( )
nY 

L (φ; x1, . . . , xn) = π (φ) f (xi; φ) 1, (2.40) 
i=1 

where 1 is a n × 1 vector of ones (see Meier-Hellstern, 1984). The complete likelihood, 

which also assumes knowledge of the hidden state spaces λ0, . . . , λr, is given by Rydén 

(1994) as 

rY 
Lc (φ; x1, . . . , xn, λ0, . . . , λn) = πλ0 (φ) fλi−1λi (xi; φ) . (2.41) 

i=1 

2.4.4.1 The complete likelihood maximisation method of Meier-Hellstern 

(1984) 

Meier-Hellstern (1984) chooses to maximise the complete likelihood with respect to Iλ 

and Q, as well as the hidden state spaces λ0, . . . , λr. An iterative optimisation, first with 

respect to (Iλ, Q) and then with respect to the hidden state spaces λ0, . . . , λr is carried out 

in order to maximise the likelihood. An attractive feature of using the complete likelihood 

is that the expression for the standard likelihood contains the product of matrices which 

can be difficult to maximise, whereas the complete likelihood is the product of scalars. 

For simplicity, a transformation of the parameters can also be performed. However, it 

is shown that this method is likely to produce asymptotically biased results due to the 

misclassification of the hidden regime variables. 

2.4.4.2 The likelihood maximisation method 

We can also maximise the standard likelihood function from above. Ramesh (1995) 

demonstrates a procedure to do this for the parameters of a switched Poisson process 

but his technique can be extended to MMPPs of higher order. However, the product of 

matrices in the likelihood makes differentiation difficult, so instead, Ramesh uses a down-

hill simplex optimisation algorithm in order to calculate his parameters. Rydén (1996) 

proposes an alternative EM algorithm where the missing data is assumed to be the com-

plete trajectory of the hidden Markov chain over the observation interval, meaning that 

there are no transitions in the Markov chain between the observations that we have. This 

results in a more computationally simple procedure for parameter estimation. We shall 

discuss both methods of optimisation in the following sections. 
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2.4.4.3 The Nelder-Mead downhill simplex algorithm 

The Nelder-Mead downhill simplex algorithm is a general optimisation algorithm that is 

used to minimise functions. We define a simplex as a geometrical figure in N dimensions 

with N + 1 vertices. In our case, define the function that we wish to minimise as f(x) = 

−L (φ; x1, . . . , xN ) . At each of the n+1 corners of the figure, we use the following iterative 

formula: 

P i = P 0 +Δei, (2.42) 

where the ei terms are N unit vectors, Δ is a vector of constants that estimate the 

optimisation problem’s characteristic length scale and P 0 is the initial starting point. 

Then, the simplex undergoes transformations that result in a lower value for the function 

f(x). These transformations can be reflections, expansions or contractions, and preserve 

the N -dimensional finite inner volume of the simplex. Upon getting close to the lowest 

point, the simplex will contract and converge on the final optimised set of values. We set 

a tolerance for the distance between steps of the convergence and stop the algorithm when 

the vector distance for a step is lower than this tolerance. An example of implementing 

this procedure is given in Press et al. (1989). 

An unfortunate complication when using the Nelder-Mead downhill simplex algo-

rithm in this context is that the likelihood we are attempting to maximise may take on 

very large or very small values that are outside the default floating-point implementa-

tions of standard computers. In our empirical study, this problem is compounded by the 

huge amounts of claims data that we use to calibrate the MMPP model. As a result, 

customised floating-point software is required and this limits the accessibility of such an 

algorithm. 

2.4.4.4 The expectation maximisation (EM) algorithm for MMPPs 

An alternative optimisation method is suggested by Rydén (1996). Suppose that there 

exist observable variables Y and additional hidden variables X. We denote the likelihood 

of a parameter φ given Y as L (φ; y)and the complete likelihood given all variables is 

denoted as Lc (φ; y, x). For a given starting parameter estimate φ0, it is known that 

� �
φ̂ = arg maxQ φ; φ0 (2.43)

φ � � 
satisfies L φ̂; y ≥ L (φ0; y), where 

� � 
Q φ; φ0 = Eφ0 [log Lc (φ; y, x) | y] . (2.44) 
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This means that as we iteratively produce new estimates for φ, the likelihoods of 

these estimates should improve. After enough steps, these estimates will ideally converge 

to the maximum likelihood estimate. 

The maximisation step above is known as the M-step and the calculation of the 

condition expectation is known as the E-step. Generally, L (φ; y) is non-linear in φ due to 

the complex expressions for the transition densities and thus, is difficult to maximise. The 

explicit E-step of the EM algorithm by Rydén (1996) makes this an attractive extension 

to the traditional EM algorithm. 

Thus, the modified EM algorithm is very useful for calibrating hidden Markov mod-

els in general, and is widely used in the literature across many different research areas. 

We explicitly set out the procedure for applying this algorithm in the following section. 

2.4.5 Parameter estimation using the modified EM algorithm 

The EM algorithm in Section 2.4.4.4 is applied to the maximisation procedure by Rydén 

(1996) to demonstrate its use in estimating the parameters of the Markov modulated 

Poisson process. In the following sections, we will outline the E- and M-steps of the 

algorithm and provide a computational procedure to calibrate the parameters of our 

Markov-modulated Poisson process. 

2.4.5.1 The explicit E-step in the EM Algorithm 

For a sequence of observed inter-arrival times y1, . . . , yn from a stationary MMPP of order 

r, let tk be the time of the kth event. We denote the times of the jumps in the hidden 

Markov chain {X(t)} by {ui} and let u0 = 0 and um+1 = tn. We also write i=1,...,m 

Ik = [uk−1, uk) as the time interval between Markov chain jumps, sk as the state of the 

Markov Chain during Ik and zk as the number of events in Ik (not counting the event 

at t = 0). The standard counting process for the number of events up until time t (not 

including the one at t = 0) is denoted by N (t). For convenience, we further define the 

following: Δuk = uk − uk−1, qk = qkk and π = π (Q, Iλ) . The complete likelihood of 

(Q, Iλ) can then be expressed as 

( )
mY � �qsk ,sk+1Lc = πs1 qsk exp (−qsk Δuk) × exp −qsm+1 Δum+1 × 

qskk=1 ( )
m+1

(λsk zk!Y Δuk)
zk 

exp (−λsk Δuk) × (2.45) 
zk! (Δuk)

zk 

k=1 
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] (2.46)= 

Given a parameter estimate (Q0, Iλ
0), the E-step becomes 

� � 
0 0 EQ Q, I Q , I;λ 0( 0λ Q ,Iλ) 

[log Lc (Q, Iλ) |N (u) , 0 ≤ u ≤ tn
r rX X ̂

= π̂i log πi − Tiqi+ 
i=1 i=1 

r r r � �XX X 
m̂ij log qij + n̂i log λi − λiT̂i , (2.47) 

i=1 j 6=i i=1 

where mij is the total number of jumps in the chain from state i to j, Ti is the total time R
in the chain spent in state i, which is equal to tn I{X(t)=i}dt, and ni is the total number of 0 

events that occurred while the Markov chain was in state i. The preliminary estimators 

for each of these are given below. We can drop the first term in the previous expression 

because the large sample size n makes the first time negligible (see Billingsley, 1961). The 

expressions for the remaining estimators are 

Z tn 

λ

λ

P(Q0,I0 

P(Q0,I0 

ˆ ) [X (t−) = i, X (t) = j| N(u), 0 ≤ u ≤ tn] dt, (2.48)mij = Z0 
tn 

T̂i = ) [X (t) = i|N(u), 0 ≤ u ≤ tn] dt, and (2.49) 
0 
nX 

λ
P(Q0,I0 

Using the above expressions, we can explicitly derive a formula for these preliminary 

expressions (see Rydén (1996) for the full derivations): 

0q
m̂ij = Q ij × 

π (Q0, I0) { n f (yk; Q0, I0)} 1λ k=1 λ⎧ ⎫ Z tn ⎨NY(t) ⎬� � � � �� � � �	 
π Q0, Iλ 

0 f yk; Q
0, Iλ 

0 exp Q0 − Iλ 
0 t − tN(t) 1i1j 

|× 
0 ⎩ ⎭

k=1 ⎧ ⎫ ⎨ n ⎬� � Y � � 
f tN (t)+1 − t f yk; Q

0, Iλ 
0 1dt, (2.51)⎩ ⎭ 

k=N (t)+2 

n̂i ) [X (tk) = i|N(u), 0 ≤ u ≤ tn] . (2.50)= 
k=1 
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1
T̂i = ×nQ

k=1 f (yk; Q0, Iλ
0)}π (Q0, Iλ

0 ⎫⎬ ⎭� 
) {⎧⎨ ⎩ 

Z NY(t)tn � �� � � �	 
Q0 − I0 1i1j 

|×λQ0, Iλ 
0 yk; Q

0, Iλ 
0 t − tN (t)π f exp 

0 k=1 ⎧⎨ ⎩ 
⎫⎬ ⎭ 1dt, (2.52) 

n

k=N(t)+2 

and 

Y� � 
yk; Q

0, Iλ 
0f tN(t)+1 − t f 

⎛⎝n

k=1 

X �1 
Q0, Iλ 

0 n̂i = π ×nQ ⎧⎨ ⎩ 
j=1 

o 
nπ (Q0, Iλ

0) 

Y 
f (yj ; Q0, Iλ

0 

n

) 1 ⎧⎨ ⎩ 
NY(tk) 

yk; Q
0, Iλ 

0 

⎫⎬� ⎭ 
⎫⎬ ⎭ 1 

⎞⎠�| yk; Q
0, Iλ 

0f 1i1 f . (2.53)i 
j=1 j=N(tk)+1 

where 1i is a vector of zeroes except for a one at the ith entry, and as defined previously, 

f (y; Q, Iλ) = exp {(Q − Iλ) y} Λ. These estimators will provide the variables that are 
trying to calibrate in the Markov-modulated Poisson process model using the following 

expressions: 

q̂ij = 
m̂ij 

,
T̂i 

(2.54) 

where i, j = 1, . . . , r, i 6= j and 

λ̂i = 
n̂i 
,

T̂i 

(2.55) 

where i = 1, . . . , r. 

These final expressions are intuitively clear as the former estimates the transition 

probabilities from states i to j by the number of jumps from states i to j divided by the 

total time spent in state i while the latter estimates the risk frequency pertaining to state 

i by the number of events that occurred in state i divided by the total time spent in state 

i. 

2.4.5.2 The EM algorithm 

The EM algorithm uses forwards-backwards recursions to calculate parameter estimates. 

Using the above, one step in the EM algorithm is as follows: 
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Our forwards-backwards equations are set up as 

1. Let L (0) = π0 and for k = 1, . . . , n, we let L (k) = L (k − 1) f (Δtk) . 

2. Let R (n + 1) = 1, and for k = n, . . . , 1, we let R (k) = f (Δtk) R (k + 1) . 

We then set starting values of Aij = 0 and Bi = 0, and assign values according to 

the following for k = 1, . . . , n: R 0¯1. Aij ← Aij + L (k − 1) tk F (t − tk−1) 1i1j f (tk−1 − t) dt R (k + 1) 
tk−1 

2. Bi ← Bi + L (k) 1i1 
0 

j R (k + 1) 

where f is the transition probability defined in Section 2.4.2.1 and 

F̄ (t) = exp {(Q − Iλ) t} . (2.56) 

Because we have L (φ; y1, . . . , yn) = L (n) 1 = π0R (1) , the new estimators for our 

transition rates and state spaces are 

0 Aij Bi 
q̂ij = qij and λ̂i = , (2.57)

Aii Aii 

where i = 1, . . . , r. AFter these estimates are obtained, the EM algorithm is repeated 

using the updated parameter estimates until convergence. 

2.4.6 Computational simplifications of the modified EM algo-

rithm 

Similar to the case with the Nelder-Mead downhill simplex algorithm in Section 2.4.4.3, 

a difficulty arises in implementing the EM algorithm presented in the previous section 

due to the values of Aij and Bi being either very large or very small. Again, in extreme 

cases, this could be outside the default floating-point implementations in standard soft-

ware and thus, customised floating-point software is required. To circumvent this issue, 

Roberts et al. (2006) proposes a scaling procedure for the forwards-backwards recursions. 

Another complication of the EM algorithm presented by Rydén (1996) is that one of the 

parameters involves the integration of matrices, which is not straightforward to implement 

in MATLAB. Roberts et al. (2006) borrows a result from Van Loan (1977) and uses a 

matrix exponential approach, which is well defined in this case and is readily available in 

standard MATLAB. The algorithm is discussed in detail in Section 3.1.1.1. 
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2.5 Operational Time Scaling 

One of the main contributions of this thesis is the application of operational time scaling 

to Markov-modulated Poisson processes within the marked Poisson model in order to solve 

some of the issues involved with the practical application of the model to real world data. 

One of the difficulties presented by the Markov-modulated Poisson process is that the 

calibration methods involve the use of claim inter-arrival times rather than the frequency 

of claims. Further, in order to accurately calibrate our MMPP parameters, we require 

a homogeneous Poisson process over time, as we assume the process is stationary over 

time. It is difficult to directly add a multiplicative factor to the intensities as this will 

change the fundamental results provided in Section 2.4.2.2. As a result, we scale the claim 

inter-arrival times instead. In the following section, we define the theoretical framework 

behind the time scaling of a Poisson process. We also provide a brief example at the end 

to demonstrate the scaling operation. 

2.5.1 Operational time in Poisson processes 

The use of operational time is a common approach in order to transform a Poisson pro-

cess with varying intensity to a homogeneous Poisson process, where the intensities are 

independent of time (i.e. the intensity function λ(t) can be written as λ. We use the 

definition from Bühlmann (1970): 

Assume that there is a claim number process Nt and a monotonically increasing 

function ρ(t) with ρ(0) = 0. We define a new process Mτ where 

Mτ = Nρ−1(τ) (2.58) 

and 

ρ−1(τ) = inf {t; ρ(t) = τ}. (2.59) 
t 

From equations 2.58 and 2.59, it holds that τi = ρ(ti) for any time points which we 

specified by the index i. 

2.5.2 Insurance claim example 

We provide a simple example here to demonstrate how we intend to use the operational 

time scaling in the Markov-modulated Poisson process. Assume that in period 1, we 

expect claims to arrive at a certain intensity λ while in period 2, we expect a claim 

intensity of 2λ. We want to homogenise the claim intensities over time. Thus, we want to 
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stretch out the time in the second period by a factor of two, so that the claim intensity 

over the entire time period is now the same as in period 1. Thus, we multiply the inter-

arrival claims in the second period by two, with a minor adjustment to the inter-arrival 

time corresponding to the time between the last claim in period 1 and the first claim in 

period 2. 
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MODEL AND METHODOLOGY 

This thesis implements a Markov-modulated Marked Poisson process using micro-level 

data in order to model the arrival of insurance claims. In the following chapter, we will 

introduce the model and explicitly set out the scaled EM algorithm by Roberts et al. 

(2006) that is used to calibrate the parameters of the MMPP. 

We start by providing the basic framework for the model. Using the notation in 

Chapter 2, the claims process distribution can be formally written as 

{(T, Zi)} ∼ Poisson(λ(t), PZ|t; t ≥ 0). (3.1)i=1,...,N 

The intensity λ(t) will be dictated by a hidden Markov chain. Using the results from 

Section 2.3, we essentially split the claims process into four distinct components: 

1. Claim Occurrences 

2. Reporting Delay 

3. Partial Payment Occurrences 

4. Partial Payment Severity 

Our key area of interest in the micro-level model here is the arrival of the claims. In 

that respect, only the first two components are relevant. However, we will briefly discuss 

in Section 6.2 how the latter two components may be appropriately fitted. By doing 

so, the research methods in this thesis can be extended to model the outstanding claim 

amounts. 

36 



CHAPTER 3. MODEL AND METHODOLOGY 

3.1 Claim Occurrences 

The model assumes that the claim arrivals are determined by a Markov modulated Poisson 

process. We investigate multiple Markov chains of different orders to determine the best fit 

for the data set. Following the notation from Section 2.4.2, the two parameter matrices 

that must be estimated are the generator matrix Q and the jump intensity matrix Λ. 

Once these matrices have been determined, the Markov modulated Poisson process is 

fully specified and simulations of the Markov process and claim arrivals can be done using 

standard Markov chain and probability theory. 

3.1.1 Parameter Estimation in the unobservable Markov chain 

Within the Markov chain component of our model, we need to estimate the intensities λi 

corresponding to the state spaces as well as the transition parameters qij . We begin with 

a Markov chain of order 2, which is a Switched Poisson Process as defined in Section 2.4.3 

but extensions to higher orders are also explored. 

The parameter calibration is done using a maximum likelihood estimation approach 

due to the advantages discussed in Section 2.4.4 such as asymptotic unbiasedness. More 

specifically, we use the modified expectation maximisation algorithm by Rydén (1996) to 

calculate the parameter estimates. However, we adopt the scaling procedure described 

in Roberts et al. (2006) in order to prevent numerical underflow that is a prominent 

issue in the modified EM algorithm detailed in Section 2.4.5. This procedure removes the 

need for customised floating point software suggested by Rydén (1996), making the model 

much more accessible to practitioners. The algorithm has a second advantage in that it 

simplifies the calculations within the EM algorithm and reduces the computational time 

required. We outline the steps of the algorithm in the following sections. 

3.1.1.1 The modified EM algorithm 

From Section 2.4.5, we have that the likelihood of the parameters (Q, Iλ) is ( )
mY � �qsk,sk+1Lc = πs1 qsk exp (−qsk Δuk) × exp −qsm+1 Δum+1 × 

qskk=1 ( )
m+1

(λsk zk!Y Δuk)
zk 

exp (−λsk Δuk) × (3.2) 
zk! (Δuk)

zk 

k=1 
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The intermediate expressions that we need to determine for the E-step of the EM algo-

rithm are Z tn 

m̂ij = P(Q0,I0) [X (t−) = i, X (t) = j| N(u), 0 ≤ u ≤ tn] dt, (3.3) 
λZ0 

tn 

T̂i = P(Q0,I0) [X (t) = i|N(u), 0 ≤ u ≤ tn] dt, and (3.4) 
λ

0 
nX 

n̂i = P(Q0,I0) [X (tk) = i|N(u), 0 ≤ u ≤ tn] . (3.5) 
λ

k=1 

3.1.1.2 Rescaled recursion equations 

Firstly, the likelihood function of the sample path {N (u) , 0 ≤ u ≤ T } can be written in 

terms of the likelihood function of the sequence Y n = {Y1, . . . , Yn} 

nY 
p (y n) = π f (yk) 1, (3.6) 

k=1 

where yn is a realisation of Y n . We can also rewrite 

nY � � 
p (y n) = p y i|y i−1 , (3.7) 

i=1 � � 
where p (y1|y0) = p (y1) . Letting ck = p yk|yk−1 , the rescaling of the backwards and 

forwards equations from Section 2.4.5.2 can be condensed into matrix notation and is 

expressed as follows: 

k
f (yi)Y 

L (k) = π , for k = 1, . . . , n (3.8) 
cii=1 

and 
n

f (yi)Y 
R (k) = 1, for k = n, . . . , 1, (3.9) 

ci
i=k 

with L (0) = π and R (n + 1) = 1. From the definition of ck, we have that 

k−1Y f (yi) 
ck = π f (yk) 1 = L (k − 1) f (yk) 1, (3.10) 

cii=1 

so finally, we can rewrite the rescaled forwards/backwards equations as 

L (k − 1) f (yk) f (yk) R (k + 1) 
L (k) = , and R (k) = . (3.11)

L (k − 1) f (yk) 1 L (k − 1) f (yk) 1 
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Roberts et al. (2006) proves that the elements of the L (k) and R (k) are upper bounded 

by 1 and 1 respectively, where Lj (k − 1) is the corresponding element in the vector 
Lj (k−1) 

L (k − 1) for the jth element Rj (k − 1). 

3.1.1.3 New parameter estimators using rescaled equations 

Define a new operation • so that for two appropriately sized matrices A and B, A•B is the 

matrix consisting of the term by term multiplication of the two component matrices. We 

can now determine the expressions for the preliminary expressions from Section 2.4.5.1: 

The matrix m̂ of the {m̂ij } terms is !0 
n Z −X t

Q0 • 1 
m̂ = 

k 

f (tk − t) R (k + 1) L (k − 1) F̄ (t − tk−1) dt . (3.12) 
ck tk−1k=1 

The r × 1 vector of the n̂i terms, n̂, is 

nX 
n̂ = L (k)0 • R (k + 1) . (3.13) 

k=1 

Using the expression we obtained for m̂ij , we can obtain T̂i as 

m̂ii
T̂i = , (3.14) 

qii 

where qii is obtained from the starting values for each step in the EM algorithm. The 

estimators for the elements in Q and Iλ can now be obtained using the same expressions 

given at the end of Section 2.4.5.1. 

3.1.1.4 Simplified evaluation of m̂

In the previous section, we note that the evaluation of the estimator for m requires the 

computation of an integral of matrices. For notational simplicity, we write 

Z yk 

Ik 
0 = exp ((Q − Λ) (yk − y)) ΛR (k + 1) L (k − 1) exp ((Q − Λ) y) dy, (3.15) 

0 

where yk = tk − tk−1. The estimator m̂ can then be rewritten as 

n I 0X 
m̂ = Q • k . (3.16) 

ck
k=1 
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In order to more easily evaluate Ik, Van Loan (1977) proposes the use of the block 

triangular matrix " # 
Q − Λ ΛR (k + 1) L (k − 1)

Ck = . (3.17) 
0 Q − Λ 

By equating the terms in the equation 

d 
exp (Cky) = Ck exp (Cky) , (3.18)

dy 

it can be shown that Ik is simply the top right block of the matrix eCkyk , which can be 

easily evaluated using the “expm” function in MATLAB, whic uses Padé’s approximation 

with repeated squaring in order to calculate the matrix exponential, which is the suggested 

method in Van Loan (1977). 

3.1.2 Accounting for discretised claim arrival records 

In practice, the exact arrival time of a claim is not available. Instead, insurers generally 

only record the day that the claim arrives. However, for the purposes of parameter 

estimation using the modified EM algorithm, we require the exact inter-arrival times 

of claims. One natural approach to this issue is to assume that the claims arrive at 

equal intervals throughout the day. An alternative approach is to simply simulate the 

arrival times of the claims throughout the day using a uniform distribution. However, 

this approach introduces more randomness into the model and we show using simulations 

in Section 4.3 that the results for the latter case are on average equal to the case of equal 

inter-arrival times. Thus, we choose the first method to solve this issue as we do not want 

to introduce artificial randomness into our model calibration. This also simplifies our 

calculations as the inter-arrival times cannot extend over multiple periods. We discuss 

the impact of this choice on the final estimated parameters in Section 4.3 and empirically 

show that the final results are similar. 
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3.1.3 Accounting for heterogeneous intensities in the Markov-

modulated Poisson process 

There are multiple factors that can occur in practice that will result in the claim arrival 

frequency changing over time. In our model, we investigate the following factors that 

would naturally alter the intensity: 

1. Reporting Delay 

2. Exposure 

3. Seasonality 

(a) Day of week 

(b) Weekend 

(c) Monthly 

(d) Quarterly 

4. Residual Trend 

We discuss the operational time adjustment that is applied for these factors in the follow-

ing section. It is important to note that the time scaling procedure that we apply here 

would be able to include any heterogeneity and provides a great amount of flexibility in 

the modelling procedure. Due to the multiplicative nature of such adjustments, we can 

combine the impacts of multiple factors by simply computing a multiplicative aggregate 

of all the time scales in order to obtain a final scaling amount. In the following sec-

tions, we will express the inter-arrival adjustments for each of the components above as 

ARD, AE , AS and AT respectively, so the final adjustment A will be 

A = ARD ×AE ×AS ×AT . (3.19) 

3.1.3.1 Reporting delay 

We first fit a distribution to the data by adopting a maximum likelihood approach to 

estimate parameters. Depending on the line of business, it may be appropriate to sim-

ply fit standard probability distributions such as the exponential, log-normal and Pareto 

distributions. However, as an alternative, Antonio and Plat (2013) demonstrates that it 

may also be necessary to have piecewise distributions. The authors fits a Weibull distri-

bution mixed with nine degenerate components representing settlement days 0 to 8. An 

advantage of using this choice is that the flexibility of the Weibull distribution combined 

with the discrete empirical components allow the model to adequately capture both short 
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and long tailed characteristics of the data. Another strategy adopted by Jin (2013) is to 

separate the reporting delays into bins and use the empirical distribution function for the 

distribution of the delays. These approaches can be compared using the goodness-of-fit 

tests such as the Akaike Information Criterion and the Bayesian Information Criterion in 

order to choose the most appropriate distribution. 

After a suitable distribution is chosen and calibrated, we scale the frequencies/inter-

arrival times in order to include the unknown claims. An assumption is made here that the 

reporting delay distribution that we calibrate is the true reporting delay distribution and 

that all claims follow this distribution. Denote the cumulative density at time t as F (t). 

Noting that the claim arrival records in practice are usually discretised, we set a unit of t to 

be equal to one discrete period in length. Then the proportion of reported claims relative 

to the total number of claims that occurred in the period is equal to F (t) − F (t − 1). In 

order to homogenise the claims arrival intensity, we scale the frequency by a multiplicative 

factor of 1 which ultimately leads to an adjustment factor ARD(t) for the claim 
F (t)−F (t−1) 

inter-arrival times of 

ARD(t) = F (t) − F (t − 1) (3.20) 

We note that we make an approximation here in that claims that arrive in the 

same day will have the same adjustment factor despite technically arriving at different 

times. However, given that insurers will generally have micro-level daily data, this is 

approximation will not significantly impact the results of the calibration. 

3.1.3.2 Exposure 

Insurers can create a deterministic function �(t) of the exposure over the investigation 

period, where t = 1, 2, . . . , T . We set our reference point at the end of the investigation 

period. We would expect that if we had a constant rate of claims per policyholder, then 

we should multiplicatively adjust the inter-arrival times at time t by the multiplicative 

factor 
�(t)AE = . (3.21)
�(T ) 

The reasoning for this may be easier to see if we look at the claim intensity from 

a frequency perspective and then reciprocal the final results to get the final inter-arrival 

time adjustment. At day t, we scale the claim frequency by first dividing by the exposure 

to get the average claims per policyholder. We then multiply by the exposure on the final 

day to obtain the claims frequency scaled to the final day. By taking the reciprocal of 

this expression, we obtain the adjustment in 3.21 above. 
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3.1.3.3 Seasonality 

We describe a general method for adjusting for seasonality here, as there are multiple 

period types that need to be investigated for seasonality trends. Denote total number of 

seasonal periods as p. We first set a reference period. For example, in the case of weekend 

seasonality, our reference period could be set to weekdays. We then calculate a vector 

S = (s1, . . . , sp) of the claim frequency in each seasonal period. If our reference period is 

set as the last seasonal period p, then we should adjust the inter-arrival times in season t 

by 
stAS = , (3.22) 
sp 

using the same logic as in the case of exposure. 

3.1.3.4 General trend 

In practice, there will be many other factors other than exposure and seasonality that 

will have an impact on claim frequencies. Structural changes such as a widening of claim 

definitions or changes in policy cover can significantly change the number of claims. It is 

possible for insurers to collate this data from their own databases and filter out the most 

of the impact of such changes. However, other changes in other environmental factors over 

time such as weather severity may be difficult to account for, either due to the insurer 

not collecting the relevant information or the factor itself being difficult to observe or 

quantify. Instead of attempting to discern all the relevant causes of the change in claim 

intensity over time, we can simply fit a trendline to the data and adjust the inter-arrival 

times using the same operational time approach shown in the previous sections. We note 

that we should apply the adjustments for the known factors first so that the trendline 

here can capture any extra trends on top of the ones already investigated. 

For simplicity, let us use the example of a linear trendline: 

Claim Frequency = α + β × Date. (3.23) 

For consistency, we will keep the reference point as the last day of the investigation 

period. We specify our Date variable as the number of days until the last day (so that on 

the last day, Date = 0). Using least squares, we can obtain estimates for the coefficients 

α and β. 

At any given day, the value of the trendline will equal to α + β × Date. whereas the 

value on the last day will simply be α. Thus, for each day, the adjustment to inter-arrival 

43 



CHAPTER 3. MODEL AND METHODOLOGY 

times in order to homogenise the claim intensity would be 

α + β × Date AT = . (3.24)
α 

Again, the reasoning behind this is clearly to see if we look at the adjustment from 

a frequency perspective. In order to homogenise the frequency relative to the last day in 

the investigation period where the trendline equation 3.24 has a value of α, we must first 

divide the frequency by α + β × Date. We then multiply the frequency by the value at 

which the claims data is meant to be homogeneous: α. Finally, by taking the reciprocal, 

we have the inter-arrival time adjustment given by Equation 3.24. 

3.2 Model Output and Results 

After both the Markov-modulated Poisson process parameters have been calibrated, we 

can use simulation procedures in order to determine the total number of outstanding 

claims in our data. We firstly need to determine the appropriate regimes at each time in 

the investigation period. The total number of claim arrivals can then be simulated using 

a Poisson distribution. This procedure is explicitly set out in the following sections. 

3.2.1 Determining the regimes of the claims arrival process 

Firstly, it is shown in Roberts et al. (2006) that the ith element of the vector L can be 

expressed using the notation in Section 3.1.1.2 as 

� � 
L (k − 1) f (yk) � 

k 
� 

L(k)i = = Pr X(tk) = i|y , (3.25)
L (k − 1) f (yk) 1 i 

where X(tk) is the regime of the Markov-modulated Poisson process at the time of the 

kth claim arrival. The latter expression is the posterior probability of the process being in 

state i at the time of the kth claim arrival tk, given the claim inter-arrival times up until 

tk. We assume that the regime of the process does not change between claim arrivals and 

thus, we can obtain the maximum posterior estimate of the regime at each point in time. 
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3.2.2 Simulating the number of claims in each inter-arrival pe-

riod 

We have that the total number of claims in each inter-arrival period is a conditional 

Poisson distribution, dependent on the state of the Markov-modulated Poisson process 

at the time. More formally, for the kth inter-arrival time yk, we can write the claims 

counting process N for this period as 

N(yk) ∼ Poisson (λk|X(tk)) , (3.26) 

where X(tk) is the state of the MMPP at the time of the k claim arrival and λk is the 

claim intensity corresponding to that state. 

Thus, we can simulate the number of claims in each of these states by using the 

above conditional Poisson distribution as we have the most likely regimes at each claim 

inter-arrival period. We also note that we would need to simulate the claims under the 

new operational time and it is extremely convenient that we have the scaled inter-arrival 

times here. This allows us to simply use the relevant calibrated frequency and multiply 

by our adjusted inter-arrival times to obtain the final claim numbers. 

Another advantage of this model is that the final claims amounts are also at the 

micro-level so that we retain the granularity of the original data. However, if required, 

we can easily aggregate the claim numbers into suitable periods for analysis. 

3.2.3 Final results 

From the above procedures, we determine the total number of claims that have occurred 

in the investigation period. When implementing the model in practice, this should be 

the period over which we want to estimate the outstanding claim numbers, which will 

be the claims that have been incurred but not reported (IBNRs). This value will then 

be the difference between the total number of claims that we have simulated and the 

observed number of claims. We note that our algorithm is stochastic so we can repeat the 

entire procedure multiple times to estimate the variance of the central estimate that we 

obtain (or even higher moments if necessary), which is an advantage of this model over 

the standard deterministic models described in Section 2.1. 
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ANALYSIS OF THE PARAMETER 

ERROR OF THE EM ALGORITHM 

The calibration algorithm presented in Section 2.4.6 is an attractive choice as it is com-

putationally cheap (relative to the other estimation methods in the current Markov-

modulated Poisson process literature) and is easily implementable in standard software 

such as MATLAB and R. However, we are not aware of any literature that investigates 

the accuracy and precision of this algorithm. Indeed, the paper in which this method is 

proposed (Roberts et al. (2006)) only investigates the improvements in terms of compu-

tational time and does not discuss the accuracy of the algorithm outputs. Thus, we fill 

this gap in the literature by conducting a simulation study in the following sections in 

order to justify the use of this calibration method in our model. 

Further, we also make assumptions during the implementation of the algorithm in 

order to resolve the issue of the discretised claim arrival data. We show in Section 4.3 that 

both of the approaches we use provide similar results to demonstrate that the assumption 

choice does not impact the final model output. 
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4.1 Sensitivity of the modified EM algorithm 

In the next two sections, we will test the sensitivity of the final estimations to the two 

manual inputs of the calibration algorithm: 

1. Initial parameter estimates 

2. Convergence tolerance 

For simplicity (and given the final model choice in our real world case study), we 

will only conduct tests with MMPPs of order 2. However, we expect to achieve that the 

conclusions will also extend to higher orders, as the algorithm does not change significantly 

between different orders of MMPPs. 

For the following sections, we use the following parameters for the simulated order 

2 MMPP: " # 
−0.1 0.1 

Q = 
0.01 −0.01 

, λ = (10, 1) (4.1) 

Also, the time frame used to simulate the data is 1000 periods. As this is not a value 

that is adjustable by an actuary in practice, we do not test the impact of the chosen time 

frame on the final estimated results. However, we intuitively expect that a longer time 

frame will generate more observations, increasing the accuracy of the calibration. 

4.1.1 Sensitivity to initial parameters 

Roberts et al. (2006) notes that in the unscaled EM algorithm by Rydén (1996), the initial 

parameter estimates do not significantly impact the fit of the algorithm. This is seen in 

the log-likelihood function 

nX 
L = log(π(Q, λ)) + log f(yk) (4.2) 

i=1 

that the initial parameter estimates π(Q, λ) has negligible effects on the overall log-

likelihood value, given a sufficiently large sample size. 

The three manual starting parameters that are input into the algorithm are 

1. A starting estimate for Q 

2. A starting estimate for λ 

3. A starting estimate for the stationary distribution of regimes a 

The tolerance level for the minimum increase in the likelihood function is set to 

10−5 and we can see from Section 4.1.2 that this should be more than sufficient. For 

comparison, the tolerance level used by Rydén (1996) is 10−1 . 
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4.1.1.1 Varying Q 

Table 4.1 below shows the effects of changing the magnitude of the initial estimate of the 

generator matrix Q. 

Initial a Initial Q Initial λ Estimated Q Estimated λ 

(0.5, 0.5) 

� � 
−0.05 0.05 
0.005 −0.005 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.5 0.5 
0.05 −0.05 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5,0.5) 

� � 
−1 1 
0.1 −0.1 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

Table 4.1: Parameter estimation when varying the magnitude of Q 

Clearly, the magnitude of the initial estimates of Q do not significantly affect the 

final estimates from the EM algorithm. However, we will also investigate initial estimates 

of Q where the transition rates are in different ratios. The results are shown in Table 4.2 

below. 

Initial a Initial Q Initial λ Estimated Q Estimated λ 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.1 −0.1 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.01 0.01 
0.1 −0.1 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.45 0.45 
0.23 −0.23 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5,0.5) 

� � 
−10 10 
10 −10 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

Table 4.2: Parameter estimation when varying the ratio of the transitions within Q 

Again, it seems like the algorithm is very robust to variation in the initial parameter 

estimates of Q. Even in the last case of the table where the initial values are very far 

from the true transition rates, the algorithm converges to the same solution. 

Thus, we conclude that the algorithm is very robust with respect to changes to the 

initial parameter estimate of Q. 
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4.1.1.2 Varying λ 

We conduct the same series of tests as in Section 4.1.1.1. Table 4.3 varies the magnitude 

of the claim intensities λ while maintaining a ratio of 10. We can see that the algorithm 

performs consistently for the smaller claim intensity initial estimates. However, once the 

initial parameters become very large, the algorithm performs very poorly and produces 

nonsensical results. For the purposes of our case study, our final estimates are moderate 

and fall between the first and second example. 

Initial a Initial Q Initial λ Estimated Q Estimated λ 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (1, 0.1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (100, 10) 

� � 
−2.638 2.638 

4.02 × 10−7 −4.02 × 10−7 (1.82 × 10−80 , 1.6146) 

Table 4.3: Parameter estimation when varying the magnitude of the intensities λ 

Further, Table 4.4 below shows the calibration estimates when we use different ratios 

between the claim intensities. We can see that we obtain exactly the same results, given 

a reasonable initial parameter estimate (although in the third case, we get a permuted 

version of the true parameters as the EM algorithm does not preserve the structure of 

the MMPP, as demonstrated in Guillou et al. (2015)). Thus, we have confidence from 

the results above that the calibration was not strongly influenced by our initial choice of 

lambda. 

Initial a Initial Q Initial λ Estimated Q Estimated λ 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (5, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (1, 10) 

� � 
−0.0067 0.0067 
0.0922 −0.0922 (1.0093, 9.9060) 

Table 4.4: Varying the ratio of the claim intensities 
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4.1.1.3 Varying a 

As in the previous sections, Table 4.5 shows the variation in the final estimated values for 

different initial values of a. 

Initial a Initial Q Initial λ Estimated Q Estimated λ 

(0.25, 0.75) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.5, 0.5) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

(0.75, 0.25) 

� � 
−0.1 0.1 
0.01 −0.01 (10, 1) 

� � 
−0.0067 0.0067 
0.0924 −0.0924 (1.0093, 9.9060) 

Table 4.5: Parameter Varying the starting distribution 

In this case, the robustness of the algorithm is very strong, as the 3 different starting 

distribution estimates all produce extremely similar results. 

Thus, looking at all 3 sections, we conclude that the EM algorithm modified by 

Roberts et al. (2006) is very robust to the starting parameters when these initial param-

eters are within a reasonable range. 

4.1.2 Sensitivity to convergence tolerance 

An attractive property of the EM algorithm is that iterative steps of the algorithm will 

not decrease the value of the likelihood function. When applying this function in practice, 

we set a tolerance level for the increase of the log-likelihood function with each step so 

that when this increase falls below the tolerance, we stop the procedure. Table 4.6 below 

shows the impact of changing the tolerance level on the final estimated parameters. 

Tolerance Estimated Q Estimated λ 

10−1 

� � 
−0.0924 0.0924 
0.0067 −0.0067 (9.9059, 1.0093) 

10−3 

� � 
−0.0924 0.0924 
0.0067 −0.0067 (9.9059, 1.0093) 

10−5 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

10−10 

� � 
−0.0922 0.0922 
0.0067 −0.0067 (9.9060, 1.0093) 

Table 4.6: Varying the tolerance of the log-likelihood increase 
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4.2 Testing the accuracy of the EM algorithm using 

simulated data 

In the following section, we investigate the general accuracy of the algorithm by Roberts 

et al. (2006) over different Q and λ values. From the results before, we can see that 

changing the tolerance value and the starting distirbution a does not significantly impact 

the final results so we set the tolerance to 10−5 and a to (0.5, 0.5). 

For each set of given ’true’ parameters, we simulate the claim arrivals according to 

the Markov-modulated Poisson process that is determined by the parameter values. We 

then apply the EM algorithm to calibrate the parameters and record the results. This 

entire procedure is repeated three times for each set of parameters and the calibrated 

values are tabulated below in Table 4.7. 

True Q True λ Estimated Q Estimated λ � � 
−1 1 

‘ 
0.1 −0.1 (10, 1) 

� 
−0.7556 0.7556 
0.0836 −0.0836 

� 
(9.5153, 0.9886) � 

−0.7887 0.7887 
0.0876 −0.0876 

� 
(9.6234, 1.0127) � 

−0.7632 0.7632 
0.0786 −0.0786 

� 
(9.2279, 1.0205) � � 

−0.75 0.75 
0.4 −0.4 (8, 1) 

� 
−0.5942 0.5942 
0.3277 −0.3277 

� 
(7.551, 1.0407) � 

−0.6046 0.6046 
0.3338 −0.3338 

� 
(7.3983, 1.0840) � 

−0.6074 0.6074 
0.3397 −0.3397 

� 
(7.3255, 1.0648) � � 

−0.5 0.5 
0.4 −0.4 (6, 2) 

� 
−0.3718 0.3718 
0.3258 −0.3258 

� 
(5.6363, 2.1011) � 

−0.2895 0.2895 
0.2577 −0.2577 

� 
(5.7219, 2.1523) � 

−0.3508 0.3508 
0.3087 −0.3087 

� 
(5.7397, 2.1641) 

Table 4.7: Testing the calibration performance of the EM algorithm using simulated data 
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We make several observations from the results above: 

1. The estimates for the generator matrix Q are lower than the true values. 

2. The ratios between the two transition rates in Q remains approximately the same. 

3. The estimates for the claim intensities λ are reasonably accurate. 

Thus, we conclude that the algorithm consistently underestimates the generator 

matrix while performing well on the jump intensities. This means that the algorithm 

underestimates the true number of regime switches in the model. However, the final 

central estimate of the algorithm will remain approximately the same as long as the 

second observation above holds true. This is shown in the following section. 

4.2.1 On the consistent underestimation of Q 

An important observation from the previous section is that while the values of Q may be 

underestimated, the ratio between the two transitions remains approximately the same. 

Consider the following Markov transition matrix: " # 
−ar ar 

(4.3) 
a a 

Using standard Markov chain theory, the time spent in each state in the long term 

is equal to the stationary distribution, which can be expressed as � � 
1 r 

(π1, π2) = , . (4.4) 
r + 1 r + 1 

Note that this expression is independent of a, and instead depends on the ratio r 

between the transition rates. Thus, in our case, the stationary distribution of the MMPP 

is unaffected by the consistent underestimation in the generator matrix Q as the ratio 

between the transitions remains the same. We can then approximate the total number of 

claims using this stationary distribution and the claim intensities that we calibrate, which 

we noted in the previous section as reasonably accurate. As a result, we expect that the 

first moment of the MMPP (which leads to the central estimate of the outstand claims) 

will be unaffected by the underestimation. 
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4.3 Equally distributed vs simulated claim arrivals 

An assumption needs to be made in order to solve the issue of discretised claims arrival 

data. There are two possible approaches here: 

1. Assume that the claims arrive at equal intervals throughout the day 

2. Assume that claims arrival times are uniformly distributed throughout the day 

In the case of the second approach, we would simulate the exact claim arrival times 

using a uniform distribution before calculating the claim inter-arrival times. In the follow-

ing section, we aim to show that the first method provides better results as there is less 

randomness that is introduced into the calibration and the assumption is more simplistic. 

We first simulate the claims using an MMPP with the following parameters " # 
−0.7 0.7 

Q = 
0.1 −0.1 

, λ = (7, 1) (4.5) 

We then discretise our claim arrivals into days and then apply both of the methods 

listed above. This will provide the claim inter-arrival times that we use to calibrate our 

parameters. 

4.3.1 Equal inter-arrival times 

If we assume that claims arrive at equal intervals during the day, we obtain the following 

results. Note that there is no stochasticity in the calibration method as the claim inter-

arrival times are the same and we use the same set of initial parameters for the EM 

algorithm. Thus, the final set of parameter estimates are 

" # 
−0.5976 0.5976 

Q = , λ = (6.7538, 1.5648) (4.6) 
0.1434 −0.1434 
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4.3.2 Simulated inter-arrival times 

We now simulate the inter-arrival times of the claims using a uniform distribution. We 

then obtain the inter-arrival times and calibrate our parameters using the EM algorithm. 

Table 4.8 shows the results of 3 simulations. 

Q λ � � 
−0.4925 0.4925 
0.1211 −0.1211 (6.8515, 1.2495) � � 
−0.6879 0.6879 
0.1067 −0.1067 (5.4935,2.0498) � � 
−0.6011 0.6011 
0.1343 −0.1343 (5.9789, 1.2648) 

Table 4.8: Calibrated parameters for the case of simulated claim inter-arrivals 

4.3.3 Conclusion 

As expected, we can see that the simulation of the exact arrival times of claims introduces 

significant randomness to the calibration and the parameters can vary by sizable amounts. 

However, on average, it seems that the simulated results are quite close to the results 

obtained by assuming equal inter-arrival times. Thus, we will use the latter assumption 

as both perform similarly in terms of accuracy but there is less parameter variability 

when assuming equally spaced claim arrivals. The simplistic approach brings additional 

benefits as the inter-arrival periods between claims can no longer go between one period 

and the next, which greatly simplifies the adjustments that are described in Section 3.1.3. 
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CASE STUDY - PUBLIC LIABILITY 

INSURANCE 

We use an empirical case study to demonstrate the benefits of our model in providing a 

realistic and accurate method to predict future claims. This study also demonstrates the 

accessibility of such a model can be implemented and because several components can be 

neatly separated into insurance-related factors, the methodology is also very tractable. For 

the purposes of this case study, we use the public liability data that comes from the AUSI 

data set which is briefly described below. Note that for the purposes of confidentiality, 

identifiable information such as axis scales have been removed. 

5.1 The AUSI Data set 

The Allianz, University of New South Wales, Suncorp and Insurance Australia Group 

(AUSI) dataset was developed as part of the Linkage Project: “Modelling claim depen-

dencies for the general insurance industry with economic capital in view: an innovative 

approach with stochastic processes”, which is supported by the Australian Research Coun-

cil and several major industry partners, namely the Allianz Group, the Suncorp Group 

and the Insurance Australian Group. The dataset is comprised of micro-level general 

insurance claims data from 4 lines of business: Home, Private Motor, Compulsory Third 

Party and Public Liability. The data is in a standard format, consisting of 

1. A policy file which describes the underwritten policy, containing information such 

as date of inception/expiry and sum insured. 
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2. A claim header file containing static claim information such as occurrence and no-

tification dates, claim states and finalisation dates 

3. A claim transaction file, containing information on each claim transaction such as 

transaction date, amount of transaction and claim status after the transaction. 

For the purposes of the case study, we will be investigating the Public Liability line of 

business. 

5.2 Preliminary data analysis 

We begin with a preliminary examination of the data set. Some basic data cleaning was 

applied and claim records with clear errors were removed. 

Figure 5.1: Daily Claim Frequency 1/1/2004 - 31/12/2013 

Figure 5.1 above gives the daily claim frequency of claim events. As we can see, 

the claim frequencies tend to increase over time, apart from approximately the last one 

and a half years where there is a significant dip in the data. This is due to the reporting 

delay of the public liability line which can be quite long tailed, as discussed later in the 

chapter. Further, the claim intensity displays a strong upwards trend. We will investigate 

the source of this trend and use the operational time scaling procedure detailed in Section 

2.5 to homogenise the first moment of the claim intensity so that the EM calibration 
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procedure can be carried out. 

It is interesting to note that the second moment of the frequency also does not seem 

to change significantly over time, shown by the amplitude of the oscillating red moving 

average line in the figure above. We will also investigate the impact of our operational 

time scaling on the second moment, as we require stationarity in order to accurately 

calibrate our Markov-modulated Poisson process model. 

Also, in the following sections, we plot the claim frequencies for ease of interpreta-

tion. However, the operational time adjustments that we apply will be the inverse of the 

frequency adjustments, as the frequency and inter-arrival times are inversely related. 

We should also note that the adjustments that are applied should be analysed in a 

hierarchical manner that the effects of one factor do not overlap with the analysis of the 

effects of another. The most intuitively clear sequence to calculate these factors is the 

one provided in Section 3.1.3: Reporting Delay, exposure, seasonality and finally residual 

trend. However, we note that when we obtain the final adjustment factors, we can apply 

them in any order we prefer as the multiplicative adjustments are associative, as seen in 

(3.1.3). 

5.3 Adjustment for reporting delay 

In order to determine the appropriate adjustment for the reporting delay within the data, 

we first determine a suitable distribution to fit the reporting delay. Analysis of this delay 

n the data suggests that the main body of the distribution lies within the first year, 

although we have a very long (but very thin) tail that stretches out until slightly under 8 

years. We fit the following probability distributions to the reporting delay data: 

1. Pareto 

2. Lognormal 

Note that we also investigated other distributions such as the Weibull and exponential 

distributions but the fit was extremely poor and the inclusion of these fits in the following 

graphs distorted the axes significantly. This made the graphs quite difficult to read and 

thus, we remove these from the following analysis. 

To smooth out the data slightly, we discretised the data into weeks and use the 

average times in each bin as the value of the bin. For example, the value of the bin for 

days 1 to 7 is 0.5. 

The overall fit by the two probability distributions is shown in Figure 5.2 below. 
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Figure 5.2: Reporting Delay fit 

Looking at the empirical distribution, the tail of the distribution is indeed quite long 

but we can also see that the tail is very thin. Thus, we expect that most of the claims 

have a relatively short reporting delay (0-3 years) while there is a very small number 

of claims with very large delays. There is some structural influence here, as the statue 

of limitations is 3 or 6 years, dependent on the geographical state. There is also the 

consideration that the claims with extremely large reporting delays may be long-lasting 

court cases that may have a very high severity. It is reasonable to remove these from the 

analysis so that they can be modelled separately. However, given that the majority of the 

empirical distribution is captured within the first 3 years and the tail is very thin, we do 

not incorporate these impacts in our analysis. 

In terms of the distributional fit to the data, we can see that the fit for the Pareto 

and log-normal distributions is generally quite good in the main body of the distribution. 

However, it seems that these distributions may overestimate the tail of the reporting delay 

data. We investigate both the body and the tail of the data separately in the following 

sections. 

5.3.1 Reporting Delay - Body 

Figure 5.3 below shows the main body of the reporting delay distribution which is the first 

200 weeks. By observation, we see that the lognormal distribution initially underestimates 

the first bin of data while the Pareto distribution performs quite well. In the later weeks, 

we can see that the fit of the Pareto and log-normal distributions both perform reasonably. 
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We note that apart from the first bin, the Pareto and log-normal distributions produce 

very similar fits. 

Figure 5.3: Reporting Delay fit - Body 

5.3.2 Reporting Delay - Tail 

Figure 5.4 below is the tail of the reporting delay distribution starting from 200 weeks. 

Figure 5.4: Reporting Delay fit - Tail 

It is more difficult to assess the quality of the fit here compared to the body as 

there are significantly fewer observations. However, it seems that both the Pareto and 
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log-normal distributions provide a very reasonable fit to the data. The performance of 

both algorithms is also quite similar, but the second half of the data suggests that the 

log-normal provides a slightly better fit here. 

5.3.3 Reporting Delay - model choice 

From the qualitative analysis above, the choice of model between the Pareto and the log-

normal distribution is relatively ambiguous. An alternative method to choose a suitable 

distribution is to use the Akaike/Bayesian information criterion in order to choose an 

appropriate distribution. The relevant statistics are provided in Table 5.1 below. 

Distribution Log-Likelihood AIC BIC 
Pareto -58668.9 117343.8 117367.4 

Lognormal -58233.9 116471.8 116487.5 

Table 5.1: Reporting delay model choice statistics 

All three statistics here corroborate our choice of the lognormal distribution. Thus, 

we will use this distribution to model the reporting delay of the claims in the public 

liability data. 

5.3.4 Adjustment for reporting delay 

Using the distribution specified above, we follow the methodology from Section 3.1.3.1 

and scale the inter-arrival times of the data. The adjusted frequencies are shown in Figure 

5.5 below. We note that the claim arrival intensities are still clearly not homogeneous as 

there is a very strong upwards trend in the data. In the following section, we investigate 

the impact of exposure on the claim intensities. 
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Figure 5.5: Frequency adjusted for reporting delay 

5.4 Adjustment for exposure 

Figure 5.6 below shows the daily number of policyholders during our investigation period 

from 1st of January, 2004 to the 31st of December, 2013. 
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Figure 5.6: Daily exposure from 1/1/2004 - 31/12/2013 

There is a similar upwards trend here and the exposure more than doubles over our 

investigation period. This will have a significant impact on our claims intensity, so we use 

the operational time scaling procedure detailed in Section 3.1.3.2. The reference date is 

set as the last day of the investigation period (31st of December, 2013). This date can be 

arbitrary designated but there are some benefits to our choice here. In practical terms, 

the last day of the investigation period is generally the day that the data was extracted 

and this day may be quite close to the current date. As a result, all the model outputs 

will be from the perspective of the current date (in terms of claims inflation). This allows 

for easy comparison with other models. 

The multiplicative adjustment to the inter-arrival times are given in Figure 5.7 

below. We can apply the following sense check to make sure the results are intuitively 

correct. In periods of lower exposure, we would expect lower numbers of claims. In order 

to make the intensity the same as our higher reference point, we need to shorten the 

inter-arrival times so that the operational ”clock” of the claims process will run faster. 

This is what we see in Figure 5.7 below, where we have essentially scaled Figure 5.6 by 

the final exposure amount on the 31st of December, 2013. 
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Figure 5.7: Daily exposure adjustment from 1/1/2004 - 31/12/2013 

5.5 Adjustment for seasonality 

We also need to adjust for any sort of seasonal trends that occur. This requires more 

analysis of the claims data. We investigate the following potential seasonal periods, chosen 

due to the nature of the public liability line: 

1. Weekend 

2. Quarterly 

Note that we first need to adjust our frequencies/inter-arrival times by the exposure 

adjustment in order to remove the impact of exposure on our seasonality trends. 

5.5.1 Weekend Seasonality 

Figure 5.8 below gives the total amount of claims per week day over the entire investigation 

period. 
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Figure 5.8: Total Claims per day adjusted for exposure 

Over the weekdays, we can see a relatively homogeneous claim intensity. However, 

there is a clear dip over the weekends in the number of claims, which is consistent with 

what we would expect in the public liability line. We apply the operational time scaling 

outlined in Section 3.1.3.3 and set the reference point as a weekday. From our calculations, 

we have that 
Average Claims per weekend day ≈ 0.472. (5.1)
Average Claim per weekday 

Thus, we adjust the inter-arrival times on weekends by a multiplicative factor of 0.472. 

Doing a sense check, this means that the operational clock of the process runs faster on 

weekends so the claim intensity is increased to the same level as on weekdays. 

5.5.2 Quarterly Seasonality 

The following figure shows the total adjusted claims per quarter over the entire investi-

gation period. These claim numbers have been adjusted for both exposure and weekend 

seasonality. 
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Figure 5.9: Total claims per quarter adjusted for exposure and weekend seasonality 

From the graph, there doesn’t seem to be a clear quarterly variation, as the total 

number of claims are relatively homogeneous over time. Thus, we do not adjust for 

quarterly seasonality. 

5.5.3 Other seasonality periods 

From the graph for weekend seasonality, there does not seem to be merit in implementing 

a time adjustment based on the day of the week, as any trend should be adequately 

captured by our weekend seasonality adjustment. We can also see from Figure 5.10 that 

there is no definitive monthly trend in the claim data. In order to avoid over-complicating 

the model, we also do not adjust for monthly seasonality. 
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Figure 5.10: Total claims per month adjusted for exposure and weekend seasonality 

However, if we wanted to incorporate these seasonal trends, the appropriate opera-

tional time adjustments are relatively straightforward and follow a similar procedure to 

the method presented in Section 5.5.1. 

5.6 Adjustment for trend 

Finally, after applying the appropriate adjustments, we can test for trends in the adjusted 

claim counts. Figure 5.11 below shows the claims frequency per day after adjusting for 

the three factors detailed in the previous sections. 
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Figure 5.11: Frequency adjusted for reporting delay, exposure and weekend seasonality 

We observe a slight downwards trend in the frequencies when fitting a line to the 

adjusted data. Using a least squares fit, we obtain the following p-values: 

p-value 
(Intercept) <2e-16 
Date 2.15e-12 

Table 5.2: Table: Linear fit of the adjusted frequency 

Thus, we can see that the gradient of the line (which is the estimate for the Date 

variable) is very significant from the extremely low p-value of 2.15e-12. Because we use 

daily data, the gradient is equivalent to a decrease of about 2% per year. Over the ten 

year investigation period, this leads to a significant change in the claim arrival intensities. 

Thus, using the procedure from Section 3.1.3.4, we adjust the inter-arrival times with the 

linear fit. Figure 5.12 below plots the final adjusted frequency values. 
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Figure 5.12: Frequency adjusted for exposure, weekend seasonality and trend 

The trendline is significantly flatter relative to Figure 5.11. To statistically confirm 

this, we fit another linear model to the adjusted frequency and obtain the following p-

values: 

p-value 
(Intercept) <2e-16 
Date 0.996 

Table 5.3: Table: Linear fit of the final adjusted frequency 

The 0.996 p-value here clearly demonstrates that there is no trend over time in the 

average claims data. Thus, we have transformed the data so that the assumption of a 

constant first moment is satisfied. Also, if we look the second moment using the red 100 

period moving average, the oscillations around the constant trendline seems to remain 

relatively similar over time (perhaps with a very slight decrease in variance towards the 

end of the investigation period). Thus, we conclude that the adjusted data now satisfies 

our requirement of stationarity (at least in terms of the first and second moments) and 

we can proceed with our Markov-modulated Poisson process parameter calibration. 
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5.7 Markov-modulated Poisson process calibration re-

sults 

We apply the modified EM algorithm from Section 3.1.1 to calibrate the parameters of 

the MMPP. The required parameters are the generator matrix Q ⎤⎡ ⎢⎢⎢⎢⎢⎣ 
−q1 q12 . . . q1r 

q21 −q2 . . . q2r 
. . ... . . ... . . 

qr1 qr2 . . . qr 

⎥⎥⎥⎥⎥⎦ , (5.2) 

and the claim intensity vector 

Tλ = (λ1, λ2, . . . , λr) . (5.3) 

5.7.1 Choice of order 

In the following sections, we give the estimated parameters as well as related statistics 

for multiple orders of the MMPP. The choice of order is based on observations of the 

estimates although standard AIC and BIC procedures are applicable here as well. 

5.7.1.1 Order 2 #" 
−0.3371 0.3371 

Q = , λ = (8.8094, 2.4123) (5.4) 
0.4396 −0.4396 

5.7.1.2 Order 3 ⎤⎡ 
−0.3102 0.3102 0 

Q = 
⎢⎢⎣ 0 −0.8643 0.8642 

⎥⎥⎦ , λ = (8.9227, 3.2681, 2.0016) (5.5) 

0.6508 0 −0.6508 
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5.7.1.3 Order 4 ⎤⎡ 
Q = 

⎢⎢⎢⎢⎣ 
−0.5209 0 0.5209 0 

0.6019 −0.6019 0 0 

0 0 −0.8002 0.8002 

0 0.6284 0 −0.6284 

⎥⎥⎥⎥⎦ 
λ = (9.2525, 7.1322, 3.3307, 1.8720) (5.6) 

5.7.1.4 Order 5 ⎤⎡ 
Q = 

⎢⎢⎢⎢⎢⎢⎢⎣ 

−0.6810 0.6810 0 0 0 

0 −0.8226 0 0.8226 0 

0.7506 0 −0.7507 0 0 

0 0 0 −0.8323 0.8323 

0 0 0.7414 0 −0.7414 

⎥⎥⎥⎥⎥⎥⎥⎦ 
λ = (9.7549, 6.9618, 6.7195, 2.6364, 1.8355) (5.7) 

5.7.2 Estimation Discussion 

If we examine the change in the claim intensities as we increase the order of the Markov-

modulated Poisson process, we can see that the values seem to fluctuate around the two 

intensities initially estimated in the order 2 MMPP. In the order 3 chain, the lower two 

states have claim intensities that are around the lower regime in the order 2 chain. For 

the order 4 chain, we have essentially the order 2 chain where both the higher and lower 

regimes have split into two different regimes with claim intensities around the original 

values in the order 2 chain. Finally, looking at the order 5 chain, there is a very small 

difference between the claim intensities of state 2 and state 3 (6.9618 and 6.7195 respec-

tively). It is difficult to realistically justify two different regimes with such close intensities. 

We also investigated chains of higher order but they also produced unrealistic or nonsen-

sical results. Thus, it seems reasonable to use the order 2 chain in order to model our 

claim arrivals process for parsimony reasons. 

An interesting characteristic of the calibrated Markov generators is that they imply 

a cyclical Markov chain process. For example, if we start from state 1 in the order 4 chain, 

we will then move to state 3 followed by state 4 and 2 before returning to state 1. Noting 

that the states are ordered from highest claim intensity to lowest claim intensity, we can 

interpret this as the process beginning in a high regime, moving to the lower regimes, 

eventually moving to the lowest regime before jumping up to the higher regimes. We 
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notice that movements between the two“main regimes” (high and low) only occurs from 

states 1 to 3 or states 4 to 2. This is most likely due to these regime shifts being more 

easily picked up by the calibration algorithm as the difference in intensity is much higher. 

This supports our hypothesis that the Markov-modulated Poisson process of order 2 is 

the correct model choice for our claims counting process. 

5.7.3 Final Markov-modulated Poisson process parameters 

Again, our final choice to model the claim arrivals is an order 2 Markov-modulated Poisson 

process with generator equal to " # 
Q = 

−0.3371 
0.4396 

0.3371 

−0.4396 
, (5.8) 

and claims intensities equal to the corresponding element of 

λ = (8.8094, 2.4123) . (5.9) 

5.8 Calculation of final outstanding claim counts 

Finally, we apply the maximum posterior filtering algorithm described in Section 3.2 to 

determine the final number of outstanding claims. After determining the most likely 

regime at each point, we simulate the number of claims that occur during each inter-

arrival period. For convenience, we aggregate the results into months. Figure 5.13 on the 

next page shows the comparison of the actual frequencies and the simulated frequencies 

from our model. 
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Figure 5.13: Actual vs simulated total public liability claim amounts for 2004 - 2013 

For the first seven years of data (2004-2010), there is no bias on average for the 

difference between the simulated frequencies and the actual frequencies. Our simulated 

results follow the major trends displayed by the claim arrivals and generally provides 

a reasonable fit to the data. From the analysis on reporting delay in Section 5.3, we 

know that almost all claims (98.9%) are reported within three years of occurrence and 

thus, we would not expect a material difference between the actual and the simulated 

claim amounts in these first years. Also, as expected, the last three years demonstrate a 

significant deviation between the actual and simulated frequencies (shown by the green 

line in the above figure) due to the reporting delay of claims arriving between 2011 and 

2013. 

Our final IBNR claim amount is equal to the overall difference between these two 

frequencies and is calculated in Table 5.4 below. 

Actual Frequency Simulated Frequency Outstanding Claims 
18608 20504 1896 

Table 5.4: Final outstanding claims reserve estimate 
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5.9 Comparative study of reserving methods 

To demonstrate the benefits of our micro-level model, we conduct a comparison of the 

prediction errors between the MMPP model and the popular chain-ladder algorithm. 

Again, from Section 5.3, we know that there are very few unreported claims after three 

years. Our data set has an extraction date within the first few days of 2014 and thus, 

we expect that we would have almost all of the claims that occurred between 2004 and 

2009. A reasonable approximation can be calculated from our reporting delay distribution, 

which gives that we would have 99.55% of the total number of claims. Thus, a test is 

conducted to compare the outstanding claims amount predicted by both models with the 

actual number of outstanding claims for which we have an accurate approximation. 

Firstly, the claims that were reported after 31/12/2009 are removed. This essen-

tially creates an artifical extraction date of the last day in 2009. We then fit our Markov-

modulated Poisson process model to this subset of the data by following the same method-

ology demonstrated in the previous sections. The analysis follows a very similar structure 

and the results ended up being quite comparable so to avoid repetition, we do not provide 

detailed descriptions here. As the MMPP model is stochastic, we repeat the calibra-

tion and simulation components of the procedure one hundred times to obtain a central 

estimate of the total number of claims that occurred between 2004 and 2009. 

The next step is to use the chain-ladder algorithm to calculate an estimate of the 

claim IBNRs. This method is discussed briefly in Section 2.1 and is very straightforward, 

so we also do not provide a detailed account of the analysis. However, we can compare the 

final outstanding claims in Table 5.5 below as a percentage of the actual IBNRs calculated 

from the full data set. 

Actual IBNRs Chain Ladder IBNRs (Average) MMPP IBNRS 
100% 96.29% 100.03% 

Table 5.5: Outstanding claims estimate comparison 

Thus, we can see that our Markov-modulated Poisson process model outperforms 

the chain-ladder algorithm and provides a much closer estimate of the outstanding claim 

amounts. We can further analyse the results on a quarterly basis. Figure 5.14 below shows 

a graph of the estimated total claims by the chain-ladder algorithm and the MMPP model, 

as well as the actual number of claims for one simulation. We can see that the stochastic 

micro-level model provides a much better fit in general to the actual number of claims 

than the deterministic chain-ladder model. This observation is especially true for the last 

year of data where the chain-ladder performs very poorly. Thus, our analysis indicates 
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that the Markov-modulated Poisson process model is a better model for the public liability 

claims. 

Figure 5.14: A comparison of the performance of the chain-ladder algorithm and the 
MMPP model for 2008-09 

We note that for earlier periods, the difference between the actual total claims and 

the claim amounts simulated by the MMPP model does not have a strong bias. Indeed, it 

can fluctuate in both the negative and positive directions. In some cases, this can lead to 

a situation where the mode predicts total claim amounts that are lower than the actual 

observed claims at the date of extraction. An ad-hoc adjustment for this issue is to simply 

change the predicted value to be equal to the maximum of the observed amount and the 

predicted amount. We leave more theoretically rigorous remedies for this issue as future 

research. 

Further, the chain-ladder in the case of claims early in the investigation period would 

have a total claims estimate that mainly consists of observed claims (due to the reporting 

delay having little impact in the earlier years). It is very possible for the chain-ladder to 

outperform the MMPP model in this scenario. However, this situation would only occur 

in the cases where almost all claims have been reported. These periods are of little interest 

to insurers for reserving purposes and thus, we conclude that the MMPP performs more 

favourably in situations that are more significant and relevant (i.e. when the claims are 

immature and have not fully developed.) 
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CONCLUSION 

6.1 Summary of results and main contributions 

In this thesis, we investigate the use of Markov-modulated Poisson processes for a micro-

level claims count model. The current literature on MMPPs mainly focuses on the areas of 

information technology and social sciences. While a small number of papers have explored 

these processes in an insurance context, the developments are theoretical and can make 

unrealistic assumptions such as a constant exposure amount over time and exact claim 

arrival records. Thus, the methods described in these papers cannot be directly applied 

to real world data. To resolve this issue and allow the MMPP models to be usable in 

practice, we create a new framework for adjusting the model so that the various factors 

that are encountered when applying real world insurance data can be incorporated into 

the analysis. 

We first introduce the calibration algorithm from Roberts et al. (2006), which is a 

convenient extension to the EM algorithm proposed in Rydén (1996) as it resolves the 

issues of numerical underflow and computational complexity that were a significant barrier 

to the implementation of the model in practice. We note that there was no discussion in 

Roberts et al. (2006) about the actual accuracy of the new algorithm and previous papers 

(see Rydén (1994), Rydén (1996), Guillou et al. (2013)) only provide brief empirical 

examples of the EM algorithm in general. Also, there is no comprehensive analysis of 

the impact of the initial input parameter estimates on the final calibrated parameters. 

Thus, we fill this gap in the literature by providing an extensive simulation case study to 

verify the utility of the algorithm for calibrating the Markov-modulated Poisson process 

75 



CHAPTER 6. CONCLUSION 

parameters. 

The second key contribution of this thesis is the operational time approach that 

is used to homogenise the claim arrival intensities. This approach is very flexible and 

allows for the incorporation of many important insurance characteristics such as reporting 

delay, exposure, seasonality and any other residual trends that may exist. Without these 

components, the MMPP model would not provide a realistic framework for modelling 

claim arrivals and thus, could not feasibly be used in practice. We also provide a detailed 

procedure to implement this operational time approach so that it is accessible to industry 

practitioners. 

Finally, the academic literature is lacking empirical analyses that determine the 

performance of Markov-modulated Poisson processes using actual insurance data. We 

demonstrate the proposed calibration algorithm through a case study using real world 

public liability data. Further, we provide a comparison between the proposed micro-level 

model and the popular macro-level chain ladder model. It is shown that the prediction 

error of the outstanding claims is considerably lower when using the Markov-modulated 

Poisson processes approach, which validates the theoretical superior performance of our 

micro-level model. 

6.2 Limitations and future research 

The techniques developed in this thesis provides the framework for several extensions. 

Firstly, the order of the Markov-modulated Poisson process was chosen using qualitative 

analysis of the calibrated parameters Q and λ. We also noted that it is possible to 

apply model choice criteria such as the Akaike/Bayesian Information Criterion but these 

generally resulted in unrealistically high orders. Thus, a natural extension here is the 

application of statistical tests that can rigorously determine the most appropriate order. 

These tests could be in the following forms: 

1. Test whether claim intensities in different regimes are genuinely different 

2. Test the fit of the model over different orders 

One possible procedure for the latter test is to adapt the reversible jump Markov 

chain Monte Carlo method in Brown and Buckley (2015) to compute a maximum a 

posteriori estimator for the number of components in the Markov chain. This paper 

applies this method to experience rating but we believe that the concepts involved are 

easily appropriated for our purposes. We give a brief description of the methodology 

below: 
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For some model Mi with a corresponding vector of parameters θi, we have a corre-

sponding stationary distribution π(Mi, θi). The acceptance probability in our RJMCMC 

for a change in the order of the Markov chains (i.e. a new model Mj with corresponding 

parameter vector can then be expressed as � ���� ∂hij (θi, u) 
∂ (θi, u) 

���� � 
(6.1) 

π (Mj , θj ) q (v) rji 
min {1, A (θi, θj )} = min 1, 

π (Mi, θi) q (u) rij 

Another area of improvement is the use of the maximum posterior likelihood vector 

in order to obtain the most likely series of regimes in our observed data. However, when 

we try to interpret the results from a real world perspective, it is possible (as was the case 

in our empirical case study) that the regime switching is too frequent for any realistic 

interpretation. A simple method to combat this issue was to change the probability 

tolerance at which a change in regime occurs. This was applied in our case study but 

the reduction in the number of regime switches was not significant and complications 

can occur in choosing the correct level of this tolerance. Instead, we propose the use 

of statistical testing to determine whether the transitions are significant. Given that 

the time to a regime change is exponentially distributed (conditional on the state of 

the underlying Markov chain), a starting distribution for this test could be the normal 

distribution through the use of the central limit theorem. 

We also note that the jump intensities of the MMPP that we calibrated using real 

world data seemed to suggest that there were two true regimes and the intensities were 

oscillating between the jumps. A natural extension here is to model the intensities with a 

Markov-modulated Poisson process where the claim intensities follow a diffusion process. 

The capture of the inherent intensity fluctuations could also feasibly reduce the order of 

the MMPP so that it is easier for statistical methods to pick the true number of regimes. 

In terms of the reporting delay component of the micro-level model, we note that 

we achieved a reasonable fit with the standard log-normal distribution. However, an 

extension here is to fit a generalised linear model so that various other effects such as 

accident year influences can be incorporated into the model. 

Further, the calibration procedure for the MMPP currently does not incorporate 

any adjustments for reporting delay, which limits the accuracy of the model. This will 

be especially true for the most recent accident years which generally the years of interest. 

Thus, an important extension would be to develop a method for incorporating the effect 

of reporting delay in the calibration of the MMPP. 

As mentioned in Section 5.9, the MMPP filtering result can produce estimates that 

are unrealistic as the total predicted claims can sometimes be lower than the number of 
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observed claims. An ad-hoc adjustment is suggested but an interesting research topic 

would be the development of a theoretically rigorous solution to this problem. 

Finally, a very important area of future research is the severity component of the 

micro-level model. Various papers (see Antonio and Plat (2013), Jin (2013)) have imple-

mented models for severity but they make unrealistic assumptions such as independence 

between claim frequency and severity. We had also implemented a severity model in 

our case study but the fit was quite poor, especially for the distribution of incurred claim 

amounts. This is in part due to the non-continuous nature displayed by the case estimates. 

Examples of the severity fit can be seen in Appendix A. A straightforward extension is 

the application of GLMs to capture inherent characteristics and dependencies that exist 

in the data. We also suggest the use of mixture models that can include the impact of 

discrete case estimate distributions and the continuous claim payment distributions. 
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SEVERITY MODELLING 

In this section, we depict some of the severity fits and demonstrate that while standard 

probability distributions may be reasonably fit to claim payments, they do not work well 

for fitting against case estimates. Figure A.1 below shows the fit of the severities associated 

with positive claim payments for bodily injury claims. From the AIC/BIC criteria, we 

conclude that the Weibull distribution is the best fit to the data. However, there is a 

clear underestimation of the density of payments between 150 and 200 dollars, which is 

problematic as this is a significant component in the main body of the distribution 

Figure A.1: BI - Postive payment severity density 
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Figure A.2 is similar to Figure A.1 but is instead for the negative payments. From 

an insurer’s perspective, this would be the recoveries that are collected. The fit here is 

much worse and while the Weibull distribution again outperforms the other candidates 

in terms of the AIC and BIC, there is significant underestimation in the body of the 

distribution. This is also complicated by the fact that there are certain recovery amounts 

that seem to be standardised from some preliminary data analysis. This fact is unable to 

be incorporated in a standard probability distribution and thus presents another problem 

in modelling the claim severities. 

Figure A.2: BI - Recovery severity density 

Finally, Figure A.3 shows the severity of transactions that occur when case estimates 

are revised. The main issue here is that while the main body of the distribution lies 

around zero, there is significant deviation on either side. These case estimates can reach 

magnitudes of millions of dollars and thus will greatly impact the modelling of incurred 

amounts. Further, the case estimate empirical distribution is not generally continuous as 

case managers will not evaluate a case exactly down to the dollar amount. Thus, standard 

probability distributions are not appropriate in this case and further research into this 

area would be greatly beneficial for the development of micro-level reserving models. 
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Figure A.3: BI - Severity of changes in case estimates 
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APPENDIX B 

MATLAB CODE 

B.1 Operational time adjustments 

%% Operational Time 

cnt = 1; 

for i = 1 : length(DATE OCC) 

for j = 1 : Frequency(i) 

DOI(cnt) = DATE OCC(i) + j/Frequency(i) - DATE OCC(1); 

day ind(cnt) = Weekday(i); 

date ind(cnt) = DATE OCC(i) - DATE OCC(1) + 1; 

cnt = cnt + 1; 

end 

end 

int arr real = diff(DOI); 

int arr real(18608) = 9; %%end of period 

%seasonality for weekends 

weekend seasonality = 0.472124365; %from excel investigation 

%seasonality for exposure, base day is the last day (31/12/2013) 

base day exposure = Exposure(end); 
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%inter-arrival time transformations from CSV 

%%implement operational time 

%for weekends 

%first case is a Thursday 

int arr(1) = DOI(1); 

for i = 2 : (length(DOI)-1) 

%if stay in weekend 

if and(or(day ind(i-1) == 1, day ind(i-1) == 7),or(day ind(i) == 1,day ind(i) == 7)) 

int arr(i) = (DOI(i)-DOI(i-1))/weekend seasonality; 

%if stay in weekday 

elseif and(and(day ind(i-1) > 1, day ind(i-1) < 7),and(day ind(i) > 1,day ind(i) < 7)) 

int arr(i) = DOI(i) - DOI(i-1); 

%if going into a weekend 

elseif and(and(day ind(i-1) > 1, day ind(i-1) < 7),or(day ind(i) == 1,day ind(i) == 7)) 

int arr(i) = (ceil(DOI(i-1)) - DOI(i-1)) + floor(DOI(i)) 

- ceil(DOI(i-1)) + (DOI(i) - floor(DOI(i)))/weekend seasonality; 

%if going into a weekday 

elseif and(or(day ind(i-1) == 1, day ind(i-1) == 7),and(day ind(i) > 1,day ind(i) < 7)) 

int arr(i) = (ceil(DOI(i-1)) - DOI(i-1))/weekend seasonality + floor(DOI(i)) 

- ceil(DOI(i-1)) + (DOI(i) - floor(DOI(i))); 

end; 

end; 

int arr(length(DOI))=9; %from data until end 

%for exposure 

%create exposure vector corresponding to days of arrivals 

for i = 1:(length(DOI)) 

arr day exp(i) = Exposure(find((DATE OCC-DATE OCC(1)+1)==date ind(i))); 

end; 

%create vector for exposure adjustment 

for i = 1:(length(date ind)-1) 

exp adj(i) = mean([arr day exp(i),arr day exp(i+1)])/base day exposure; 

end; 

exp adj(length(date ind))=1; 
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%scale the interarrivals by the exposure adjustment 

int arr = int arr.*exp adj; 

%%further adjust interarrival times 

%intercept is at the end 

gradient = -0.0004440; 

intercept = 9.654 + gradient*(3652-1); 

%Calculate interarrival time adjustments, where the base date is the end of 

%each period 

int arr adj = ones(1,length(int arr)); 

for i = 1 : length(int arr) 

int arr adj(i) = (intercept-gradient*(date ind(end)-date ind(i)))/intercept; 

end; 

int arr final = int arr .* int arr adj; 

%reporting delay lognormal 

ln mean = 1.74031; 

ln std = 1.59611; 

for i = 1:length(DOI) 

rep adj(i) = 1/logncdf((3652-ceil(DOI(i)))/7,ln mean,ln std); 

end; 

int arr final = int arr final .*rep adj; 

B.2 The scaled EM Algorithm by Roberts et al. (2006) 

%Recursive scaled algorithm from Roberts and Ephraim 2006 

%Assumed known ini dist 

function [L,R,loglikelihood, m hat, n hat, D hat ,Phi gen new,Phi jump new] = 

EM Algorithm scaled ndim(dim,int arr,Phi gen,Phi jump,ini dist) 

n = length(int arr); 

%L is a column vector, R is stored as a column vector but is transposed for 

%use 

L = zeros(n+1,dim); 

R = zeros(n+1,dim); 

%Base case of recursion algorithms 
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L(1,:) = ini dist; 

R(n+1,:) = ones(1,dim); 

%Recursion of the L and R cases 

for i = 1:n 

L(i+1,:) = ((L(i,:)*trans f(int arr(i),Phi gen,Phi jump))/(L(i,:)* 

trans f(int arr(i),Phi gen,Phi jump)*ones(dim,1))); 

end; 

for i = n:-1:1 

R(i,:) = (((trans f(int arr(i),Phi gen,Phi jump)*R(i+1,:)')/(L(i,:)* 

trans f(int arr(i),Phi gen,Phi jump)*ones(dim,1)))'); 

end; 

%calculation of n hat which is a 2 by 1 column vector 

n hat = zeros(dim,1); 

for i = 1:n 

n hat = n hat + (L(i+1,:)').*(R(i+1,:)'); 

end; 

%calculation of c k for all k 

c vec = zeros(n,1); 

for i = 1:n 

c vec(i) = L(i,:)*trans f(int arr(i),Phi gen,Phi jump)*ones(dim,1); 

end; 

%calculation of the integral of matrix exponentials using Van Loan I k 

I k sum = zeros(dim,dim); 

for i = 1:n 

I k sum = I k sum + (VL I k(i,dim,Phi gen,Phi jump,L,R,int arr)/c vec(i)); 

end; 

%Calculation of m hat 

m hat = Phi gen.*(I k sum'); 

%Calculation of vector D hat using the diagonal entries of m hat 

D hat = zeros(2,1); 

for i = 1 : dim 

D hat(i) = m hat(i,i)/(Phi gen(i,i)); 

end; 

Phi gen new = zeros(dim,dim); 

Phi jump new = zeros(dim,dim); 

%for non-diagonal elements 

for i = 1 : dim 

for j = 1 : dim 

if i ~= j 

Phi gen new(i,j) = m hat(i,j)/D hat(i); 

end; 

end; 

end; 

%for diagonal elements 
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for i = 1 : dim 

Phi gen new(i,i) = -sum(Phi gen new(i,:)); 

end; 

%for intensity matrix 

for i = 1 : dim 

Phi jump new(i,i) = n hat(i)/D hat(i); 

end; 

loglikelihood = sum(log(c vec)); 

end 

B.3 MMPP order 2 calibration example 

rng(1) 

%specify size of matrix 

dim = 2; 

%Initialise the intensity parameters and the transition parameters 

inten1 = 10; 

inten2 = 2; 

q1 = 0.1; 

q2 = 0.1; 

%Create the jump intensity and generator matricies 

Phi jump = diag([inten1, inten2]); 

Phi gen = [ -q1 q1; q2 -q2]; 

%Create the starting stationary distribution of the states (two state 

%model) which is assumed to be the initial distribution 

ini dist = [0.5 0.5]; 

%set tolerance for EM algorithm 

tol = 1e-3; 

%Run algorithm once 

[L,R,loglikelihood prev,m hat,n hat,D hat,Phi gen new,Phi jump new] = 

EM Algorithm scaled ndim(dim,int arr final,Phi gen,Phi jump,ini dist); 

loglikelihood = -inf; 

Phi gen = Phi gen new; 

Phi jump = Phi jump new; 

count = 0; 

while abs(loglikelihood - loglikelihood prev) > tol 
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count = count + 1; 

loglikelihood prev = loglikelihood; 

[L,R,loglikelihood,m hat,n hat,D hat,Phi gen new,Phi jump new] = 

EM Algorithm scaled ndim(dim,int arr final,Phi gen,Phi jump,ini dist); 

Phi gen = Phi gen new; 

Phi jump = Phi jump new; 

end; 

%%filtering 

%find maximum probability 

for i = 1:length(L) 

L max(i) = max(L(i,:)); 

end; 

%find state of maximum (remember to ignore first row as it is set as the 

%initial distribution 

for i = 1:length(L) 

states(i,:) = (L(i,:) == L max(i)); 

end; 

for i = 1:(length(L)) 

for j = 1:dim 

if states(i,j) == 1 

state vec(i) = j; 

end; 

end; 

end; 

%%count number of jumps 

jump count = 0; 

for i = 1:(length(L)-1) 

if state vec(i) ~= state vec(i+1) 

jump count = jump count + 1; 

end; 

end; 
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B.4 Simulating from an MMPP model 

%Simulate data 

sim Phi gen = Phi gen; 

sim Phi jump = Phi jump; 

sim q = [sim Phi gen(1,2), sim Phi gen(2,1)]; 

sim lambda = [sim Phi jump(1,1), sim Phi jump(2,2)]; 

sim stat dist = [sim q(2)/(sim q(1) + sim q(2)), sim q(1)/(sim q(1) + sim q(2))]; 

%start in state one, simulate transition times, resimulate if first freqs 

%are zero 

time cum = 0; 

count = 1; 

freq cum = 0; 

while time cum < 3000 

if mod(count,2) == 1 

%simulate time until jump to other state 

jump time(count) = -(log(1-rand())/sim q(1)); 

%simulate number of event s, assume uniformly distributed 

freq(count) = poissrnd(sim lambda(1)*jump time(count)); 

else 

jump time(count) = -(log(1-rand())/sim q(2)); 

freq(count) = poissrnd(sim lambda(2)*jump time(count)); 

end; 

freq cum = freq cum + freq(count); 

time cum = time cum + jump time(count); 

time cum vec(count) = time cum; 

count = count + 1; 

end; 

nz freq = freq; 

nz time cum vec = time cum vec; 

nz jump time = jump time; 

%remove zeros 

for i = 1:length(freq) 

if freq(i) == 0 

nz time cum vec(i) = 0; 

nz jump time(i) = 0; 

end; 
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end; 

nz freq = nz freq(nz freq ~= 0); 

nz time cum vec = nz time cum vec(nz time cum vec ~= 0); 

nz jump time = nz jump time(nz jump time ~= 0); 

%calculate exact arrival times 

%first case 

arr time index = 1; 

arr time(arr time index) = nz time cum vec(1)/nz freq(1); 

arr time index = arr time index + 1; 

for j = 2 : freq(1) 

arr time(j) = arr time(j-1) + nz time cum vec(1)/nz freq(1); 

arr time index = arr time index + 1; 

end; 

%other cases 

for i = 2 : length(nz freq) 

%for the first case of each jump 

arr time(arr time index) = (nz time cum vec(i) - nz jump time(i) + 

(nz jump time(i)/nz freq(i))); 

arr time index = arr time index + 1; 

for j = 2 : nz freq(i) 

arr time(arr time index) = arr time(arr time index - 1) + 

(nz jump time(i)/nz freq(i)); 

arr time index = arr time index + 1; 

end; 

end; 

%Calculate the interarrival times 

int arr(1) = time cum vec(1)/freq(1); 

int arr(2:length(arr time)) = diff(arr time); 
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