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ABSTRACT

Environmental and economic events may lead to sudden changes in the claim arrival rate
for an insurer. These random fluctuations cannot be captured by the homogeneous Poisson
process. Hence doubly stochastic Poisson processes, or Cox processes, have been intro-
duced as a tool which allows for stochasticity in the claim intensity. In particular, the
shot noise Cox process has analytically tractable properties as well as a nice physical inter-
pretation from an insurer’s perspective. Despite extensive developments in the theory of
doubly stochastic Poisson processes and applications in physical sciences, finance and mor-

tality, very little has been done in using the model in an insurance context for claim counts.

This research calibrates and compares two methods to fit shot noise Cox processes to
claim insurance data. The main issue in modelling lies in fitting parameters to an unob-
servable intensity process. We propose a framework for applying the Kalman filter based
on a Gaussian approximation of the shot noise process. We also calibrate a Markov Chain
Monte Carlo filtering method previously applied on high frequency trading data to use in
a non-life insurance context. In particular, we improve the stochastic expectation max-

imisation method by reducing the dimension of the optimisation problem.

The proposed methods are then calibrated and validated through simulation studies which
reflect the nature of insurance data. Computational challenges in implementation of the
procedure are addressed in order to improve the accuracy and efficiency of the methods.
A comprehensive study of modelling the shot noise Cox process on real general insurance
claims data is undertaken where practical issues inherent in insurance claims data such as

impact of insurer exposure are addressed.
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CHAPTER 1

INTRODUCTION

The primary objectives for general insurance companies include ensuring they are able to
meet their financial obligations to policyholders while being able to deliver profits for their
shareholders. In order to meet these objectives, products need to be priced to accurately
reflect the risk the insurer has undertaken while reserves and capital need to be held to
ensure a certain level of safety over a certain time horizon. Hence, developing accurate
methods of modelling the number of claims incurred over a specified time interval is im-
portant as this quantity is directly linked to the capital and reserving requirements for an

insurer.

The classical method for modelling claim counts is the distributional approach, where
it is assumed that the number of claims over a certain length of time follows a particular
discrete distribution. The popular distributions used in this method include the Poisson
and negative binomial distributions. Despite its simplicity and accessibility to practition-
ers, this approach has several shortcomings. For instance, in order to reliably model the
number of claims per year using the distributional approach, historical data on the aggre-
gate yearly number of claims for several decades would be required. The insurer would
usually have claims data at a finer level than aggregate number of claims per year which
is not utilised with this approach. This means that the distributional approach does not

utilise the data insurers have efficiently.
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These shortcomings motivate the use of stochastic processes to model claims counts. In
particular, count processes are used as they are able to capture the evolution of claim
frequency over time as well as utilise data more efficiently. A popular process in mod-
elling claim counts over time is the Poisson process. This process, however, implies that
the claim rate for the insurer does not change over time whereas in reality, this rate at
which claims are incurred changes according the random variations in environmental and
financial conditions. For example, in periods of extreme weather such as heavy rain may
lead to greater number of road accidents and hence lead to a significantly higher number
of claims for the insurer during that time. The inhomogeneous Poisson processes, which
allows for intensity to change deterministically with time, does cover some these short-
comings. Unfortunately, the homogeneous Poisson process are still unable to capture the
randomness inherent in the changes in environmental conditions and their impact upon

claim frequency for the insurer.

1.1 Research Motivation

The primary motivation for this research is to develop a robust modelling framework for
insurance claim counts which is able to capture the impact of random nature of environ-
mental and economic conditions on the claim intensity. This can be done so by allowing
the claim intensity of the Poisson process to also be a stochastic process. This forms what
is known as the doubly stochastic Poisson process, or the Cox process. The idea was
first contrived by Cox (1955) with extensive applications in physical sciences such as in
Diggle and Diggle (1983) and Mgller (2003). It has been also been applied in credit risk
modelling in Lando (1998) and mortality modelling in Biffis (2005). It is only recently
that the idea has been considered in a general insurance context to model claim counts
and inter-arrival times. From an insurer’s perspective, allowing for stochasticity in the
claim intensity means that the counts process can capture the randomness of variations in
claim intensity, giving a more realistic and robust model for claim counts. As this model is
able to capture the dynamics of claim rates over time more accurately, it will potentially
allow insurers to accurately calculate reserves and capital required as well as calibrate

their pricing strategy.

Despite the fact the model has been empirically applied in financial areas such as modelling
default rates in credit risk and mortality rates in a life insurance context, the majority
of the current literature for doubly stochastic Poisson processes in a general insurance

context focuses heavily on development of theoretical results. There has been no empir-
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ical studies of doubly stochastic Poisson process and recent applications of the model to
pricing insurance contracts has been done under a purely theoretical setting. When us-
ing doubly stochastic Poisson processes to model claim counts in an insurance setting, a
variety of practical issues such as modelling an unobserved intensity process need to be
dealt with. Through exploring, comparing and calibrating alternative modelling methods
through a case study on real data, the research aims to address these issues in order to
make the doubly stochastic Poisson process more accessible for practitioners to use for

pricing, reserving and solvency calculations.

1.2 Thesis Outline

The thesis is structured in the following way. Chapter 2 provides a background of vari-
ous stochastic processes used to model counts data and review general features of doubly
stochastic Poisson processes. Methods used to fit doubly stochastic Poisson processes to

fit counts data in various fields outside of insurance are discussed in more detail.

Theoretical features of the shot noise Cox process are explored in Chapter 3. Distri-
butional properties and moments of both the shot noise intensity with exponential decay
and the shot noise Cox process are derived and discussed as they will be utilised in the
model fitting procedure. Qualitative criteria for selecting an appropriate intensity process
for the doubly stochastic Poisson process will also be included which motivated the selec-

tion of the shot noise process for the research.

In Chapter 4, we discuss the issues involved in fitting shot noise Cox processes to counts
data which mainly revolve about modelling an unobserved intensity process. We propose
and discuss in detail two different methods for estimating parameters via filtering of the
intensity which are based on widely used techniques for modelling latent variables. Both
heuristic and formal goodness of fit tests are also provided. The methods described are
calibrated and validated through a simulation study conducted in Chapter 5. The simu-
lation study is done for various parameter sets where the performance of both methods

proposed in Chapter 4 are analysed and compared.

The thesis concludes in Chapter 6 with a summary of the contributions of the thesis in
the context of the current theoretical literature and application of claim count modelling.

Suggestion for areas of further research are also included.



CHAPTER 2

LITERATURE REVIEW

This chapter provides a literature review on key methods in relation to modelling insurance
claim frequency over time. Section 2.1 will provide a brief overview of properties of count
processes which have been used extensively to model counts data. In particular, the
shortcomings of the homogeneous Poisson process are highlighted in order to motivate
the use of doubly stochastic Poisson processes. Section 2.2 focuses on the theoretical
framework of doubly stochastic Poisson processes which includes its definition and key
distributional properties. The key features of the intensity processes will be outlined in
Section 2.3, where two specific affine processes will be analysed. Current methodology of
fitting stochastic processes and model selection procedures will be explored in Section 2.4.
In particular, different methods for filtering out latent variables will be discussed. As a
potential application of the doubly stochastic Poisson processes lies in reserve calculations,
the current methods and techniques in stochastic reserving will also be reviewed in Section
2.5.

2.1 Background of count processes

This section aims to provide a general overview of features in count processes as well
as major ones which have been used to model counts data. The shortcomings of the

described processes are also outlined and they are used to motivate the development of
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doubly stochastic Poisson processes.

Traditionally, discrete distributions have been used to model counts data over a speci-
fied time frame where the parameters of the distribution is usually estimated through
means of maximised likelihood. In this approach, the number of claims over a length of
time (such as 1 year) is a random variable X with a discrete distribution. Popular distri-
butions include the Poisson distribution with parameter A\, whose probability distribution
function and first two central moments are stated by Klugman et al. (1998) as:
e M\F
P(X =k) = o k=0,1,2,.. (2.1.1)
E[X]=2A, Var(X)=A\

as well as the negative binomial distribution with parameters n and p, whose probability
distribution function and first two central moments are also stated by Klugman et al.
(1998) as:

(1—p)"p*, k=0,1,2,.. (2.1.2)

np np
E[X]=-——, Var(X)= W

This method, despite its simplicity, does not capture how the counts evolve over time.
In order to do so, a stochastic process {X(t),t > 0} will be considered as an alternative
model. In an insurance context, using stochastic processes to model claim frequencies
allows one to take advantage of knowledge of claim arrival times from data in order to
produce more accurate calculation of reserves over time as well as accurately capture de-

pendencies between lines of business over time.

Denote X (t) — X (s) where t > s as the increment of the stochastic process from s to
t. A stochastic process is said to have stationary increments if the distribution of the
increment N (t) — N (s) is dependent only on the length of the interval ¢ — s. This property
is expressed in the following way by Denuit et al. (2007):

Pr(X(t) — X(s)) = Pr(X(t — s) — X(0)) = f(h)

where f(-) is a function of h = t—s. Two intervals (a, b) and (s, t) are said to be be disjoint
if the intersection of the two intervals is empty, or in other words, (a,b) N (s,t) = 0. A

stochastic process is said to have independent increments is for any set of disjoint inter-
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vals, the increments over these intervals are independent. In other words, for any 2 disjoint
intervals (a,b) and (s,t), the increments X (t) — X (s) and X (b) — X (a) are independent.

A stochastic process is said to have the Markov property if the conditional distribution of
future projections of the process given the whole history of the process is the same as the
conditional distribution of future projections of the process given most recent information

on the current state. This is expressed mathematically as:

Pr(X(t)| X (u),0 <u <s)=Pr(X(t)|X(s))

A special type of stochastic process called a counting process is used to model event
frequency over time. A count process is defined by Klugman et al. (1998) to be a non-
negative integer valued stochastic process {N(t),t > 0} and for any ¢ > s, N(t) > N(s)

almost surely.

2.1.1 Poisson Process

One of the first count processes used for modelling counts data is the Poisson process. It’s
popularity is sourced from its various desirable theoretical properties. This is defined in
Mikosch (2009) in the following way:

Definition 2.1. A stochastic process {N(t),t > 0} is said to be a Poisson process if the

following conditions hold:
1. The process starts at zero: N(0) = 0 almost surely.

2. The process has independent increments for any t;,i = 0,...,n and n > 1 such that
0=ty <t <..<ty, the increments N(t;) — N(ti—1),i = 1,...,n are mutually

independent.

3. There exists a non-decreasing right continuous function m : [0,00) — [0,00) with
m(0) = 0 such that the increments N(t) — N(s) for 0 < s <t < oo have a Poisson
distribution Pois(m(t) — m(s)) where m is denoted as the mean value function of
N(t).

4. With probability 1, the sample paths of the process N(t) are right-continuous for
t > 0 and have limits from the left for t > 0. This implies that N(t) has cadlag
sample paths.

Note that combining the first and third properties implies that N(t) = N(t) — N(0) ~
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Pois(m(t)). If m is continuous, another function A(¢) is denoted as the intensity function

such that:

m(t) = / AMy)dy,s <t (2.1.3)

For a Poisson process, the intensity function can be thought of changes in flow of time,
where higher intensities corresponds to speeding up of arrival times and lower intensities

corresponds to the slowing down of arrival times.

2.1.1.1 Homogeneous Poisson process

Out of all the Poisson processes, the most popular one is the homogeneous Poisson process,
denoted as {N(t),t > 0} where the intensity function is a constant A(t) = . A standard
homogeneous Poisson process has an intensity of A = 1. The homogeneous Poisson process

has the following definition based from the one in Mikosch (2009):

Definition 2.2. The homogeneous Poisson process with intensity X\ has the following

properties:
e [t has independent and stationary increments.

e For small increments At > 0, then:
1= MAt+o(At) ifk=0

Pr(Nepar — Ny = k) = ¢ AAL + o(At) ifk=1
o(At) ifk>2

where o(At) is a function such that lima;—0 O(AAtt) =0.

From the above definition, the probability distribution of increments of the homogeneous
Poisson process is:
ef)\(tfs)()\(t _ s))k

Pr(N, — N, =k) = o (2.1.4)

which has the probability generating function (from Denuit et al. (2007)):
Gi(z) = exp(Mt(z — 1)) (2.1.5)

From the probability generating function, it can be inferred that the relationship between
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the first 2 central moments of a Poisson process to be:
E[N;] = Var[N;] = Mt (2.1.6)

Denote T as the arrival time of the i*”. For a homogeneous Poisson process, it is assumed
that the interarrival time for the i*" claim T; — T is exponentially distributed. This re-
sults from the assumption of stationary and independent increments of the homogeneous

Poisson process.

The popularity of the homogeneous Poisson process stems from its simplicity in modelling
and its range of very attractive statistical properties such as stationarity and indepen-
dence of its increments. In fitting a homogeneous Poisson process, the only parameter
which needs to be estimated is A and since there exists a closed form for the probability
distribution of increments, likelihood methods can be implemented in order to find an

estimate of \.

Due the stationarity and independence of increments for a homogeneous Poisson pro-
cess, its relies on the assumption that intensity which claims arrive remain constant over
time. This means that impact of changes in meteorological and safety conditions on the
probability of an accident occurring. The assumption has been shown in various empirical
studies to be an erroneous. In fact, Seal (1983) first identifies that there is little empirical
evidence that the Poisson process is a good fit for insurance claim frequency data. An-
other major shortcoming of the homogeneous Poisson process is that it does not capture
a phenomenon known as overdispersion which is prevalent in counts data, particularly in

claim frequency in an insurance setting.

2.1.1.2 Inhomogeneous Poisson Process

An alternative model to the homogeneous Poisson process is the inhomogeneous Poisson
process, which follows Definition 1.1 where the intensity function A(¢) is a non-constant
deterministic function with respect to time. The deterministic intensity function aims to
capture inhomogeneity in arrival time of events due to a variety of factors. In an insurance
context, inhomogeneity in claim arrival times arises due to seasonal weather effects result-
ing in clusters of accidents occurring in particular times in the year. The inhomogeneous

Poisson process is defined in Denuit et al. (2007) as:

Definition 2.3. The inhomogeneous Poisson process with intensity function \(t) has the
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following properties:
e [t has independent increments.

e For small increments At > 0, then:

1= At)At +o(At) ifk=0
Pr(Nesar — Ny = k) = { A(H) At + o(At) ifk=1
o(At) if k>2

where o(At) is a function such that lima;—0 % =0.

Mikosch (2009) used the inhomogeneous Poisson process to model accident claims fre-
quency on the Danish fire insurance data and showed the fit is a significant improvement
from using a homogeneous Poisson process. It can be argued, however, that some of the
factors which results in the inhomogeneity in arrival times of events are random by na-
ture. Once again, in an insurance context, weather and its impact on claim arrival times
is considered to be stochastic. This will result in stochasticity in the intensity of the
process which is not fully captured with a deterministic intensity function. Although the
inhomogeneous Poisson process allows the stationary increments property to be relaxed,
it still doesn’t account for overdispersion of counts data as the mean and variance of the

increments is still assumed to be equal.

2.1.2 Overdispersion

One of the main properties of both the homogeneous and inhomogeneous Poisson process
is that over a specified time interval, the mean of the process is the same as the variance of
the process. Denuit et al. (2007) describes the phenomenon overdispersion to be when the
variance of the process exceeds the mean. This phenomenon arises due to various reasons.
One of these is the heterogeneity of the population resulting in difference in the risk of claim

for each policyholder. This fact is not accounted for when assuming a constant intensity A.

Hougaard et al. (1997) attempts to address this by introducing a different class of Poisson
processes known as the mixed Poisson process. The intensity A is assumed to be a non-
negative random variable with a known distribution such as Gamma and Inverse Gaussian.
An interpretation for randomizing the intensity is that the riskiness of the policyholders

is captured through an assumed distribution of the population.
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Although this method does account for overdispersion of claim frequencies, the assumed
distribution of the population does not change over time as the population changes. Also,
the mixed Poisson process does not account for common changes in the claim intensity of
each policyholder due to seasonal effects. In the study of accident statistics by Bartlett
(1986) suggests that although there is strong evidence for heterogeneity between drivers,
there is also significant evidence which suggests changes in the claim intensity could be
caused by shifts in environmental factors. A stochastic process would be more realistic in
capturing random fluctuations in the intensity and this leads to the development of the

doubly stochastic Poisson process.

2.2 Doubly stochastic Poisson processes

Doubly stochastic Poisson process, also known as the Cox process, was first introduced
in Cox (1955) who considered stochastic variations in the intensity for a Poisson process.
It is able to account for both overdispersion which is prevalent in counts data as well
as capture dynamics in claim intensity resulting from seasonal trends and environmental
factors. This section aims to give a detailed description of the theoretical framework for
doubly stochastic Poisson processes and how certain statistical properties can be used in

model fitting and selection.

Doubly stochastic Poisson processes have been applied extensively in physical sciences
such as population dynamics in Diggle and Chetwynd (1991) and in rainfall modelling
such as Rodriguez-Iturbe et al. (1987). They mainly focus on modelling clustered spatial
point patterns which arrive in different rates according to the position on the plane. Tem-
poral Cox processes have also been used extensively in finance and longevity modelling.
In credit risk, Lando (1998) used the arrival time of the first event of a doubly stochastic
Poisson process to represent default time of a company and hence determine probability
of default. Biffis (2005) and Schrager (2006) extended the idea of modelling the first event
arrival time of a doubly stochastic Poisson process with affine intensity to model survival

probability.

More recently, theoretical developments have been made for using doubly stochastic Pois-

son processes in a non-life insurance setting. In ruin probability, for the following surplus
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process:

N(t)
Ug=u+ct— Z X;
j=1

traditionally the claim arrive rate N (¢) was modelled using a homogeneous Poisson process
to derive ruin probabilities. Bjork and Grandell (1988) and Albrecher and Asmussen (2006)
extended this framework by deriving estimates of ruin probabilities in the case where
N(t) is a doubly stochastic Poisson process. Dassios and Jang (2003) derived the price of

catastrophe reinsurance contracts and derivatives under the assumption that claims arrive

according to a doubly stochastic Poisson process.

2.2.1 Definitions

Consider a homogeneous Poisson process with intensity rate 1 {N;,t > 0} and a stochas-
tic process {Ay,t > 0} which is non-negative for all ¢ > 0. Then Grandell (1976) de-
fines the doubly stochastic Poisson process {N(t),t > 0} as N(t) = N o (fg A(s)ds)
which is a homogeneous Poisson process with a underlying stochastic subordinating pro-
cess ( fot A(s)ds) which is the integral of the intensity process. We define the integrated
process M(t) = fg A(s)ds as the mean value process. It should be noted that the ho-
mogeneous Poisson process Ny is independent of the subordinator ( fot A(s)ds) and hence

independent of the intensity process A;.

The characteristic functional of a stochastic process allows one to determine the distri-
bution due to the bijective relationship between distributions and generating functionals.
In his discussion paper of Cox (1955), Bartlett defines the characteristic functional of the

doubly stochastic Poisson process to be:
t
Dy (t)(0(t) = Ey [exp ( / A(s)(e?®) — l)dt)} = d(M — 1) (2.2.1)
0

where @, is the characteristic functional of the mean value process M (t) = fg A(t)dt.
Hence, an explicit expression for the characteristic functional for the intensity process is
all that is required in order to determine an explicit expression for the characteristic func-

tional of the counts process.

The probability generating functional is useful in obtaining probabilities for the doubly
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stochastic Poisson process. Cox and Isham (1980) defines this to be:

G(O(t)) = E4 [exp (/oo A1 — 6(t))dt>] (2.2.2)

—0o0

The probability distribution function of the increments of a doubly stochastic Poisson
process can then be determined from the above. Grandell (1976) defines the distribution

function of the doubly stochastic Poisson process as follows:

Definition 2.4. (Probability distribution of the increment of a doubly stochastic Poisson
process)

{N(t),t > 0} is a doubly stochastic Poisson process with underlying intensity process
{A(t),t > 0} if for a realised sample path of the intensity process on the interval (s,t), the
probability distribution of the increment N(t) — N(s) is given by:

(a0

n!

Pr(N(t) — N(s) =n|A(u) = AMu),s <u<t)=
where the intensity process is non-negative for all t.

Hence, by taking expectations with respect to the intensity process A, the unconditional

probability distribution of N(¢) can be determined to be:

(2.2.3)

Both the inhomogeneous and homogeneous Poisson process are special cases of the doubly
stochastic Poisson process, where the intensity process is a purely deterministic function
with respect to time (for inhomogeneous Poisson process) or a constant (for homogeneous
Poisson process). It can be seen that for 0 < a < b, the distribution of N(t) conditional
on a sample path of A; will be the same as that of the inhomogeneous Poisson process.
Hence it can be said that the disjoint increments of the doubly stochastic Poisson pro-
cess are conditionally independent. Like the inhomogeneous Poisson process through, the
increments may not necessarily be stationary. The mixed Poisson process described in
Hougaard et al. (1997) is also a special case of the doubly stochastic Poisson process,

where the intensity process is just a random variable.

Grandell (1976) provides an alternative definition based on the interarrival times of the
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process. Consider T; and T; which are the i interarrival times of the N(t) and N (t)

respectively. For all i:

T; = M~ Y(T)
where M~ (x) = sup(y; M (y) < z) (2.2.4)

This definition of the doubly stochastic Poisson process is used to model time to default
for credit risky assets as demonstrated in Lando (1998), where the arrival time of the
first event can be thought of as the default time. The arrival time of the first event of a
doubly stochastic Poisson process is then extended to model mortality as demonstrated in
Biffis (2005) and Schrager (2006). Cox and Isham (1980) then presents another definition
the doubly stochastic Poisson process similar to the definitions of the homogeneous and

inhomogeneous Poisson processes stated in the previous section:

Pr(Npsar — N(t) > 0[A(s) = A(5),0 < s < 1)
5

= A(t) (2.2.5)

PI‘(Nt+At — N(t) > 1) = 0(5) (226)

where At is a small increment in time ¢ and A(¢) is the realisation of the intensity process

at time t.

2.2.2 Thinning

One of the attractive features of the homogeneous Poisson process is that it can be de-
composed into a sum of independent homogeneous Poisson processes whose intensity is a
proportion of the intensity for the aggregate process. This is known as thinning of the
Poisson process. This is desirable as it allows for categorisation of events into different
types. From a general insurance perspective, this means the overall claim process for the

company can be decomposed into claim processes for different lines of businesses.

Like the Poisson process, the doubly stochastic Poisson process can also be thinned. Karr
1985 defines the thinned Cox process in the following:
Definition 2.5. (The thinned doubly stochastic Poisson process)

Consider the doubly stochastic Poisson process in the form:

N(t) = Z i<y

Let U; be a random variable which is independent to N(t) where Pr(U; = 1) = p. Then
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the thinned doubly stochastic Poisson process N'(t) is of the form:
') => Uilgn<y
i

Karr 1985 also provided statistical properties of the thinned process {N'(t),t > 0} which

lines the thinned process with the original process:

() (f(£) = P (—log(1 = p+pe™ 1)) (2.2.7)
P(N'(t) = 0) = ‘I>N( )(—log(1 —p)) (2.2.8)
E[N'(t)] = pE[N (2)] (2.2.9)

which are analoguous to the results for the homogeneous Poisson process. Karr 1985 also
showed that N(t) — N'(t) and N'(t) are independent doubly stochastic Poisson process
processes with intensity processes (1 — p)A(t) and pA(t) respectively.

2.2.3 General statistical properties

Denote the filtration at time ¢ of the possible paths of the underlying intensity process
F]. Cox and Isham (1980) then defines the first 2 conditional central moments to be:

E[N(t) — N(s)|[A(u) = A(u),,s <u<t]= / AMu)du (2.2.10)
WﬂN@—N@WWO—MMﬁSUSﬂ—/A@Mu (2.2.11)

This is analogous to the inhomogeneous Poisson process where the first 2 central mo-
ments are equal. Then by law of iterated expectation, the unconditional moments can be

determined to be:
HN@—N@H:/EMWWu (2.2.12)
Var[N(t) — N(s)] = / E[A(u)]du +Var(/ A(u)du) (2.2.13)

where we can see that the extra variance term of the stochastic integral of the underlying
process f; Adu accounts for overdispersion in claim counts. This extra term in the vari-
ance arises from the uncertainty in the estimate of the claim intensity which increases the

variability of the number of events in the time interval [a, b].
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Many of the statistical properties of the doubly stochastic Poisson process is dependent
on the stastitical properties of intensity process. Firstly, Grandell (1976) noted that
Ny(t) = Np(t) if and only if A4(t) = Ap(t) which gives the uniqueness of the intensity
process for each doubly stochastic Poisson process. This implies that the doubly stochastic
Poisson process is completely characterised by the intensity process. Grandell (1976) also
noted that the doubly stochastic Poisson process N(t) has stationary increments if and
only if the intensity process A(t) has stationary increments. This is apparent when consid-
ering homogeneous Poisson process, which is a very special cases of the doubly stochastic
Poisson process, where the constant intensity is clearly stationary. As mentioned pre-
viously, the doubly stochastic Poisson process has conditionally independent increments,
however, the increments may not be unconditionally independent. In fact, Grandell (1976)
found be shown however, that the correlation of number of events in two different intervals

(s,t) and (a,b) to be given by the equation below:

Cov(N(t)—N(s), N(b)—N(a)) = E [ / dA(u)du] +Cov ( / " A(u)du, / b Audu> (2.2.14)

where (¢, d) = (s,t) N (a,b) is the overlap of the two intervals (s,t) and (a,b). Suppose the

two intervals were disjoint, then the above equation reduces down to:

Cov(N(t) — N(s), N(b) — N(a)) = Cov < / " Au)du, / bA(u)du>

= Cov (M(t) — M(s), M(a) — M (b)) (2.2.15)

Hence the doubly stochastic Poisson process N () will have uncorrelated increments if and

only if the mean value process M (t) = fot A(u)du has uncorrelated increments.

Consider the compensated Cox process C(t) = N(t) — fot A(s)ds, which is analogous to
the compensated Poisson process. A consequence of the correlation structure is that
C(b) — C(a) and fst A(u)du are uncorrelated. Furthermore, if the intervals (a,b) and (s, t)

are disjoint, then C(b) — C(a) and C(t) — C(s) are uncorrelated.

2.2.4 Some examples

Much of the properties of the doubly stochastic Poisson process are largely dictated by
the characteristics and structure of the underlying intensity and mean value processes.
This implies that the doubly stochastic Poisson process is completely characterised by

the underlying intensity process. Thus the problem of modelling claim counts using dou-



CHAPTER 2. LITERATURE REVIEW 16

bly stochastic Poisson processes reduces down to modelling the claim intensity using a

stochastic process.

Aside from the trivial cases where A(t) is a constant or deterministic, resulting in ei-
ther a homogeneous or inhomogeneous Poisson process, another special case of the doubly
stochastic Poisson process is to consider the intensity process as a continuous time Markov
chain driven by another continuous time Markov chain B(t) with finite state space S which

satisfies the following differential equations:

() = —akpr(t) + > pi(D)ain
i#k

where pi(t) = Pr(B(t) = k), ¢ and ¢ are elements from the generator matrix such that:

P(B(t+ h) = k|B(t) = i)

e
%0 h
4 = Z Qik
ki

So when B(t) = k, we have A(t) = A\,. This process is considered in Rudemo (1972) and
Neuts (1971) with applications in queuing and replacement theory. As the underlying
Markov process B(t) has finite states, the intensity process A(t) will also have finite states
meaning that the values which the intensity process can take will be limited. This is not
realistic in insurance, where the claim arrival rate should be able to reach any non-negative
values. In order to increase the set of values the intensity can take, the number of states
will need to be increased. In relation to model fitting, one extra state would lead to one
extra parameter needed to be estimated and hence for a large state space, this model is

not parsimonious.

The intensity process of the doubly stochastic Poisson process does not necessarily need to
have a parametric form. Bouzas et al. (2009) and Bouzas et al. (2010) uses functional prin-
cipal component analysis to fit the intensities of doubly stochastic Poisson processes via
piecewise cubic interpolation. The advantage of non-parametric intensities is that it does
not require any distributional assumptions on the intensity and hence it is more . How-
ever forecasting future claim arrivals with a non-parametric intensity constructed through
interpolation may be restricted. As this research focuses on fitting insurance claims data
where applications of the model includes forecasting, we shall focus on parametric models

for the intensity process.
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2.3 Affine intensity processes

Although there are infinitely many stochastic processes which could be used to model the
intensity, in order to determine analytical expressions for key statistical properties such as
distributions and moments of the doubly stochastic Poisson process, the intensity process

needs to be analytically tractable.

A key criteria for the intensity process A(t) is that A(t) > 0 for all ¢ > 0 with proba-
bility 1 . This is necessary in the insurance context as the rate claims are incurred should
be positive. Also it ensures that the mean value process f(f A(s)ds is monotonically in-

creasing over time, which is once again realistic from an insurer’s perspective.

One family of stochastic processes to consider is the affine intensity processes. The main
advantage of affine jump diffusion process lies in its analytical tractability which has been
utilised in modelling default times in credit risk in Lando (1998) and mortality in Biffis
(2005). This section aims to give a general overview of affine processes and distributional
properties for two particular affine processes which are also positive with probability 1; the
shot-noise process and the Cox-Ingersoll-Ross process. Other potential intensity processes

will be reviewed as well.

2.3.1 Definition

The definition from Biffis (2005) of an n-dimensional affine jump diffusion processes is

given below:

Definition 2.6. Consider the probability space (0, F,P. An n-dimensional affine jump
diffusion process Ay is a F-Markov process which is the solution to the following stochastic

differential equation:
dA(t) = p(t, A(t))dt + o(t, A(t))dB(t) + dS(t) (2.3.1)

where B(t) is a standard Brownian motion and S(t) is a point process with jump inten-
sity {v(t,A¢),t > 0}. In particular, the drift p(t,A:), instantaneous covariance matric

o(t,A)o(t,Ay)" and jump intensity k(t, A¢) are affine functions of A;.

Another desirable quality for the underlying intensity is mean reversion. In an insurance

context, this implies that the claim rate has a tendency to move towards an average rate
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over time. This implies that any shifts from this average are temporary shocks caused
from seasonal effects and will be absorbed over time. Mean reversion of the intensity
also ensures that the mean value process does not diverge, or in other words, fg Ay < 0.
In particular, a basic affine jump diffusion process with mean reversion will satisfy the

following stochastic differential equation stated in Bluhm et al. (2003):
dA(t) = k(0 — A(t))dt + o/ A(t)dB(t) + dS(t) (2.3.2)

where k is the rate of mean reversion.

Noting that one of the necessary conditions for the intensity process A(t) is that A(t) > 0
for all ¢ and that mean reversion is desirable, two main processes which hold both of these

properties are the shot-noise process and the Cox-Ingersoll-Ross process.

2.3.2 Shot noise process

One of the more well known shot noise processes is where the spikes in the intensity
decays exponentially. This is also known as the classical shot noise process and arrives
from letting the function . Cox and Isham (1980) defines the classical shot noise process

which is the explicit solution to the above equation as follows:
J(t)
A(t) = A(0)e ™™ + >~ X e k=) (2.3.3)
j=1

where 7; are arrival times from the homogeneous Poisson process J(t) with intensity p and
{X,} are independent and identically distributed non-negative jump sizes with density g.
The term k > 0 determines the rate at which the process decays exponentially from jumps.
These aspects are characterised in Figure 3.1, which shows a sample path of the shot noise
process. It can be seen that the stochasticity of this process lies purely with the jumps,

where the exponential decay of these jumps are completely deterministic.

An interpretation of the above in an insurance context is analogous to the one given by
Dassios and Jang (2003), where certain environmental or financial events will trigger an
increase in the rate at which people claim. The timing of these events is given by 71, ..., 7;
and the severity of the impact of these events is given by X1, ..., X;. Eventually, the impact
of these events will recede and the rate at which this occurs is determined by the constant

k. In Dassios and Jang (2003), this was used to price stop loss reinsurance contracts,
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Figure 2.1: Illustration of sample path of the shot noise process

where the jump times are based on periods where natural disasters such as earthquakes

occur.

2.3.3 Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross process from Cox et al. (1985) is the solution to the following

stochastic differential equation:
dA(t) = k(0 — A(t))dt + o/ A(t)d B, (2.3.4)

This can be seen as a basic affine diffusion process without a jump component. Conse-
quently the process will be continuous for all £. In the long run, this process reverts to
the mean denoted as € where k is the rate of the adjustment. In particular, given the
condition 0 < 2k#, then the process A(t) will always be positive. Cox et al. (1985) also
notes that the distribution of the process is non-central chi-squared. A diagram of the

sample path is shown in Figure 2.2.

2.3.4 Other affine processes

Other potential affine processes have been considered for various applications in finance
and physical sciences. Basu and Dassios (2002) prices stop-loss reinsurance contracts
where the underlying intensity process considered is a log-normal process A(t) = ce”¥ ()

such that Y (¢) is a Gaussian process. In particular, the Gaussian process considered in
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Figure 2.2: Illustration of sample path of the Cox-Ingersoll-Ross process

the paper is the Ornstein-Uhlenbeck process with the stochastic differential equation:
dY (t) = —aY (t)dt + dB(t)

Another process which has been used is the Hawke’s process, which is a generalised version

of the shot noise process. This is defined in Hawkes (1971) to be:

P
At) =A0) + DY aje il (2.3.5)

i<t j=1
where the jumps occur according to a homogeneous Poisson process with rate p. The
above equation implies that for each event, multiple jumps in the intensity would occur
and for each jump, there is a different rate of decay. For P = 1, the Hawke’s process

corresponds to the shot-noise process.

2.4 Model fitting and selection

In order to model with a doubly stochastic Poisson process, the parameters of the intensity
process needs to be estimated. This section aims to review methods to estimate param-
eters as well as overcoming the issues to fit the doubly stochastic Poisson process. The
alternative non-parametric estimation techniques for the intensity will also be outlined.
Several model selection methodology will also be reviewed to analyse the goodness of fit

for stochastic processes.

One potential method in estimating parameters for the intensity process for a doubly



CHAPTER 2. LITERATURE REVIEW 21

stochastic Poisson process is the maximum likelihood method. For a given intensity pro-
cess, an expression for the probability distribution of the count process is obtained and
hence the likelihood function can be derived. This was attempted in Konecny (1986) for
the case where the stochastic intensity is driven by a Markov chain, but this was only
for the case where there were two states in the Markov chain. There is, however, limited
literature on the direct application of the maximum likelihood method on data, especially
insurance claim data. This may be due to the difficulty in deriving closed form expressions
for the likelihood function and verifying that estimators possess attractive properties such
as asymptotic efficiency and normality, consistency. This is especially for non-stationary
intensity processes, which are the processes the research is focused on, as the properties
listed earlier was only shown to hold in Konecny (1986) for stationary intensity processes.
The likelihood function may not necessarily be in a closed form and hence difficult to
apply to real data. Another approach which is similar to the maximum likelihood method
is the least squares estimation method. This method is adopted in Luciano and Vigna
(2005) in modelling mortality rates with the Cox-Ingersoll-Ross process where the squared
difference between the theoretical and actual mortality probability is minimised. The time
to death is measured as the arrival time for the first event of a doubly stochastic Poisson
process for a given intensity. Like the maximum likelihood estimation method, there also
needs to be an analytic expression for the distribution of the doubly stochastic Poisson

process.

The main practical issues which arises in the fitting procedure through maximum likeli-
hood or least squares method directly. This is where the stochastic claim intensity process
is unobservable in the counts data. Rather, only claim arrival times and frequency history
is known. If the expression for moments and distribution of the doubly stochastic Poisson
process cannot be attained in a closed form for a particular intensity, direct application of

maximum likelihood or least squares would not be possible.

The filtering problem is akin to the issue of fitting unobservable stochastic volatility in
financial markets, where this relationship is highlighted in both Barndorff-Nielsen and
Shephard (1998) and Frey and Runggaldier (2001). Hence, methods of dealing with unob-
servable intensity process in the doubly stochastic Poisson process are similar to methods
of dealing with unobservable stochastic volatility in finance. The main method used to
estimate parameters for unobservable intensities involves filtering . This procedure in-
volves the estimation of the conditional intensity process given an observed process and

conducting statistical inference on the conditional intensity.
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In physical sciences, the parameter estimation for doubly stochastic Poisson processes
has been done using without likelihood estimation. Diggle et al. (1976) and Stoyan (1992)
utilises second order summary statistics such as the Ripley’s K-function and pair correla-
tion function to apply the method of minimal constrast on clustered point patterns. These
methods, however, have been developed for modelling spatial point process and hence are
not applicable to model temporal data such as claim intensity. Hence we investigate the
two popular filtering methods used in filtering latent variables: the Kalman filter and
Markov Chain Monte Carlo methods.

2.4.1 Kalman Filter

One type of filtering involves using the Kalman-Bucy filter introduced in Kalman (1960).
The rationale behind the Kalman filter is as follows. Consider the conditional mean square

error of the estimate of the intensity A from the true intensity A(t) denoted below:
MSE = E[(A; — A(t))?|N(s),0 < s < ]

Kalman (1960) noted that the above equation is minimised when the estimated intensity
process A, is the conditional expectation of the intensity E[A(t)|N(s),0 < s < t]. Hence
the intensity process is adjusted recursively in order to minimise the conditional mean
square error via several recursive differential equations which describes links the current
state of the intensity process to the future state as well as the change in the mean square

error.

The state equations for the Kalman filter from Kalman (1960) is as follows:

Xy = A Xy 1+ Boug + W, (2.4.1)
Yi=H:X: +V; (2.4.2)

where W; and V; are zero mean Gaussian noise with covariance matrix (); and R; re-
spectively and w; is another control input process. X; is the unobserved process which
is filtered, u; refers to an external control variable which the user inputs and Y; is the
measured or observed process which is driven by the unobserved process. In a insurance
context, the unobserved process would be the claim intensity which drives the observed
claim counts process. After initialisation at time 0, there are two main steps to this algo-

rithm: the time update and the prediction update. Then the general algorithm given in
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Kalman (1960) is as follows:
1. Time update which predicts the value of X; for the next time step:

(a) Predict (a priori) the estimate for the unobserved process for next time step:
Xiji—1 = AeXi—1 + By

(b) Predict (a priori) the estimate for the covariance for next time step: Py;_; =
AP AT + Q

2. Prediction update which calibrates the value of X; based on the measured process
Y;:

(a) Update the covariance: Sy = HtPt|t_1H;‘F + Ry
(b) Derive the Kalman gain: K; = Pt‘t,lﬂg’S;l

(c) Update the unobserved process estimate (a posteriori): Xy = X1 + K¢ (V; —
H;Xy;—1) where Y; is the observed data.

(d) Update the covariance estimate (a posteriori): P, = (I — K¢Hy) Py

The filter has been in finance used to estimate stochastic volatility in Rydberg and Shep-
hard (1999) for stocks and in longevity for estimating mortality rates in Schrager (2006)
which is modelled by an affine intensity process. The Kalman-Bucy filter, however, is
applicable only for Gaussian processes in general. Both the Cox-Ingersoll-Ross and shot-
noise processes are not a Gaussian process as it is a discontinuous process, and hence a
direct application of the Kalman filter cannot be applied to the process. To overcome this
issue, Dassios and Jang (2005) approximated the shot-noise process by a Gaussian process
in order to develop the Kalman-Bucy filter, which is the continuous time extension of the
Kalman filter, in order to price stop-loss reinsurance contracts. The Kalman-Bucy filter
also relies on a assumption that the system is linear, which is not necessarily true for many

non-Gaussian intensity processes.

2.4.2 Markov Chain Monte Carlo methods

An alternative class of methods which are used to filter out an unobserved intensity are
Markov chain Monte Carlo methods which involves resampling a conditional intensity
similar to that of moving between states in a Markov chain. The idea behind this is that
eventually the sampled intensity will move towards a stationary distribution. Examples
of Markov Chain Monte Carlo methods include the Metropolis-Hastings algorithm (see
Metropolis et al. (1953) and Hastings (1970)), which is based on the random walk, and
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the Gibbs sampler proposed in Geman and Geman (1984). The general algorithm in the

Markov chain Monte Carlo method is:
1. Propose a type of transition.
2. Given the type of transition, generate a new state to transition into.
3. Accept the new state with a certain probability.

Given that the sampling comes from a Markov chain, a stationary distribution of the sam-
pled intensity will be reached with enough iterations of the above procedure. Bayesian
likelihood inference through expectation maximisation is then conducted on the sampled
intensity in order to obtain parameter estimates. Markov chain Monte Carlo methods have
been widely used as the method to model stochastic volatility in finance. Chib et al. (2002)
modelled the stochastic volatily from S&P 500 daily returns via a Markov chain Monte
Carlo method based on the Metropolis Hastings algorithm while Barndorff-Nielsen and
Shephard (2001) considered non-Gaussian stchastic volatility models using Monte Carlo

techniques with particle filters.

In particular for the shot-noise Cox process, Centanni and Minozzo (2006) proposes an
extension of the MCMC filter known as the reverse jump Markov Chain Monte Carlo
method in order to model the dynamics in the S&P 500 futures index. Monte Carlo
simulation in this method is required as the system is non-linear. This method is based
on the Metropolis-Hastings algorithm where the estimate for the intensity process is con-
stantly updated based on the observed events. While the Metrotroplis-Hastings algorithm
requires the intensity process to be Markovian, the reverse jump Markov Chain Monte
Carlo method allows this assumption to be relaxed. For the simulated conditional inten-
sity, expectation maximisation is used in order to predict the parameters for the model
and Another advantage of this procedure is that the intensity process can be recursively
updated as new information arrives. There are however issues on convergence and As this
method is calibrated in this research to filter the unobserved claim intensity, more details

about the procedure is provided in 5.2.1.

2.4.3 Goodness of fit tests for stochastic processes

As mentioned in previous sections, the intensity process is unique for every doubly stochas-
tic Poisson process. So in order to test for the goodness in fit for the counts process, it
is suffice to test the goodness of fit for the underlying intensity process. Hence, the hy-
pothesis that the true intensity process A(t) matches the fitted intensity process A; can
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expressed in Dachian and Kutoyants (2008) to be:
Ho:A(t)=A, t>0 vs Hi:A(t)#A t>0 (2.4.3)

One of the classical test statistic used for this test is the Kolmogorov Smirnov test statistic
from Kolmogorov (1933). Denote M; = f[f Ayds as the mean value process. Then the count

process version is expressed in Dachian and Kutoyants (2008) to be:

1 . -
D, = — sup |M™ — M| (2.4.4)
My o<s<t
where A; denotes the fitted mean value process and Mt(") is the empirical mean value
process. The empirical mean value process can be determined by considering the number

of events in n sub-intervals of length ¢t. The empirical mean value process can be found
by:

.1 " . o -
M = — Zl # of events in the time interval [i,i +¢ — 1)
1=

For the Kolmogorov Smirnov test statistic, it can be shown that for a large enough sample

size, the statistic converges to the following:

VD, — sup |W|
0<s<1
where {W,,0 < s < 1} is a Brownian bridge process. This can be used to find the ap-
proximate the probability Pr(D,, > 15”) as well as approximating the alpha level rejection
region R such that Pr(D,, > R) = a.

The other classical test statistic used to test the hypothesis is based on the Cramer-
von Mises (or Anderson-Darling) test statistic in Anderson and Darling (1952). This is
again expressed in Dachian and Kutoyants (2008) to be:

t
V2= "2/ (NI, — M)2d M, (2.4.5)
t Y0

Like the Kolmogorov Smirnov test statistic, the Cramer-von Mises test statistic also con-

vergences for large enough n in the following way:

1
V2 - / W2ds
0
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Similarly to the Kolmogorov Smirnov case, this approximation can be used to determine

p-values as well as rejection regions.



CHAPTER 3

FEATURES OF THE SHOT NOISE
COX PROCESS

The purpose of this chapter is to analyse and develop statistical features of the shot noise
Cox process which will be used in the model fitting procedure in the next chapter. In
Section 3.1, we analyse the properties of the shot noise intensity process with exponen-
tial decay, in particular focusing on the derivation of the distribution and moments of
A(t). From Chapter 2, Grandell (1976) noted that doubly stochastic Poisson processes
are uniquely defined by the intensity process. As we shall use the results in the modelling
number of claims over a time increment [s, ¢] in the following chapters, we focus the devel-
opment of our results on the increments of the shot noise Cox process N (t) — N(s). Hence
we then can use these properties to derive further distributional properties and moments

for the increments of the shot noise Cox process in section 3.2.

3.1 Shot noise intensity
In this section, we present the definitions and features of the shot noise intensity in an

insurance context. The distributional properties, moments and time correlation structure

of the shot noise intensity process are derived.

27
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Figure 3.1: Sample path of the shot noise process

As in Cox and Isham (1980), the shot noise intensity process with exponential decay

is defined in the following way:

Definition 3.1. (Shot noise process with exponential decay) Consider the following stochas-

tic differential equation of the process {A(t),t > 0}:
dA(t) = —kA(t)dt + dK (t) (3.1.1)

where {K (t),t > 0} is a point process with underlying Poisson process {J(t),t > 0} with
rate p. The solution of (3.1.1) is the shot noise process of the form:

J(t)
A(t) = A0)e ™M+ Xje Hmm) 1> 0 (3.1.2)
7=1

where A(0) > 0, the shot size X;, j = 1,..., J(t), are independent and identically distributed
exponential random variables with parameter n while T; represents the arrival time of the
shots.

A typical sample path of the shot noise process is shown in Figure 3.1. For {A(t),t > 0}
to be a valid underlying intensity process for the Cox process, it must be almost surely
positive for all ¢ > 0. This is due to the fact a counts process cannot have a negative

intensity. For the shot noise intensity, since A(0) > 0 and the intensity A(¢) is the sum of
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positive jumps with exponential decay with A(0), it can be seen that A(¢) is almost surely
positive for all time ¢t > 0. Hence the shot noise process is a valid underlying intensity for

the Cox process.

There is an alternative for (3.1.2). From Proposition 2.1.16 in Mikosch (2009) which
states that:

J(t) J(t) J(t)
S(t) = ZXje—k’(t—Tj) 4 ZXje—kt(l—Uj) 4 ije—ktUj (3.1.3)
7j=1 Jj=1 j=1

where U; are independent and identically distributed uniform [0, 1] random variables which
are independent of X; and J(t). The second inequality arrives from the fact for a uniform
[0,1] random variable U; has the same distribution as 1 — U; to show that. This leads to

the following reformulation:

Lemma 3.1. (Alternative representation of shot noise intensity) The shot noise intensity
can be expressed in the following form which has an equivalent distribution for allt > 0:
J(t)

A(t) = A(0)e ™ + S(t) £ A(0)e ™ + 3 X e MU (3.1.4)
j=1

where U; are independent and identically distributed [0,1] random wvariables which are

independent of X; and J(t).

The above representation of the shot noise process immediately follows from the fact that
A(0) is independent to S(t). This result can be explained from the fact the ordered jump
times 7; in S(t) is just the permutation of the jump times tU; in ascending order. This

result will be useful for derivations of results in this chapter.

The mean value process, which is the integrated intensity process, can be then be de-

fined in the following:

Definition 3.2. (Mean value process) The mean value process {M(t),t > 0} for the shot

noise Cox process is defined as follows:

M(t) = /OtA(t)dt = % A(0)(1 — e *) + ZXj(l — e~ klt=m)) (3.1.5)

where M(0) = 0. The process M (t) is both increasing and non-negative.
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The above definition is derived in the following:

M(t):/o A(s)ds

t J(s)
= / A(0)e™ + Z Xje =T s
0 ]
1 t J(s)
= ZA(0)(1 —e M) + / Z Xie ) s
k 0 =
1 (s) +
= EA(O)(l —e Rty ¢ Z Xi/ e k=i ds
=1 7
1 J(t)
= (A0~ e + ;Xju — e k=T

where in the second last line arrives from the fact that for the shots component X e k(s=7j) —

0 for s < 7j.

As mentioned in the previous chapter, (3.1.2) can be interpreted from an insurance per-
spective in the following way. In the occurrence of an event such as a hailstorm, the insurer
will face a sudden increase in the number of claims incurred. The claim arrival rate will
decrease as impact of the event diminishes with time, which is reflected by exponential
decay, until the next event occurs. These events arrive randomly according to a Poisson
process where the parameter p reflects the average number of events per time unit which
will impact the claim arrival rate. The exponential random variables X; with parameter n
reflects the immediate impact of the event on the claim arrival rate such that the average
jump size is % The parameter k£ in the decay reflects the rate of absorption of the event.
For rare event or catastrophe insurance applications such as in Dassios and Jang (2003),
typically there would be a few events with large impact which is indicated by a small p and
small 1 while for high frequency insurance businesses, there would be a large number of
primary events with smaller impact which is indicated by relatively larger p and 7. Hence
the process is also adaptable to the characteristics of different lines of business which the

insurer may wish to model.

Based on (3.1.1), it can be seen that the shot noise process is in fact mean reverting.
The interpretation of this feature in an insurance context is that the claim arrival rate
will generally be at a mean rate until events generate sudden increases in the rate. As the

impact of the event decays, the intensity will revert to the mean level. This also implies
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that as t — oo, the process will remain finite which is reasonable as one would expect that

in the long run, the claim arrival rate for an insurer should not diverge.

From a forecasting perspective, it is also reasonable to assume that in order to predict
future claim arrivals, only the current or most recent claim arrival information is needed.
This feature can be mathematically translated into the Markovian property as described
in the previous chapter. In order to show that the shot noise process is Markovian, we

introduce the alternative formulation of the Markov property:
Definition 3.3. A stochastic process {A(t),t > 0} is said to be Markovian if and only if

for all s < t, we have:
E[A(®)[Fs] = E[A({)[A(s)] (3.1.6)

Then considering the form of the shot noise process in (3.1.2), for any s < ¢, we have:

J(t)
A(t) = A(0)e ™™ + > X e k(=)
7=1
J(s) J(t)
_ A(O)efksefk(tfs) + Z Xjefk(sffj) + Z Xjefk(tfrj)
Jj=1 j=J(s)+1
J(s) J()=J(s)
_ (A(O)e—ks + Z Xje—k(s—rj))e—k(t—s) + Z XJ(8)+je_k(t_TJ(s)+j)
j=1 Jj=1

J(t)=J(s)
= A(s)eFIm 4 N X e FITTI )
j=1
Then taking the conditional expectations of both sides with the filtration of the intensity

process F;, we have:

J(t)—J(s)
E[A(t)|Fs] = E[A(s)e (=) 4 X y(sypje M0+ |
j=1
J(£)—J(s)
= As)e I LB Y Xy ge O F]
j=1

Since {J(t),t > 0} is a Poisson process with arrival times 7;, we can use the stationary

and independent increment property of the homogeneous Poisson process J(t). Hence, we
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can see that:

J(t)— J(t—s) J(t—
Z Xyprge OO F] =Bl Y Xy ] = Z s HTIAG)

J=1 J=1

—

where 7; are arrival times for the Poisson process J(t — s). We note that 7;, J(t — s) and

X; are independent of A(u) for 0 < u < s (and hence A(s)4). Thus this implies that:

E[A(4)F] = As)e ™7 + E]

J(t—
=T | A (s)]

= E[A(®)[A(s)]

Hence, we can see that the shot noise process with exponential decay is Markovian.

3.1.1 Moments of the shot noise intensity

We now derive the moment generating function of A(t) in order to obtain the moments
of A(t). These properties will be used. We shall first consider the moments of A(t) in
the case the initial value A(0) is a known constant. It can then be shown that if A(0) is
Gamma distributed, the stationary distribution of A(t) is also Gamma. This is important
from a modelling perspective, since A(0) is not observable and hence an assumption needs

to be made on its distribution.

Noting that in Equation (3.1.2), A(0) and S(t) = Z;]:(tl) Xje #t=7) are independent,

then see that in the case A(0) is a constant:

DA (1)140) (1) = P (0)e—k45(1)A(0) (W)
= MO g (u)

From the reformulation of the shot noise process in (3.1.3), let ¥; = X je_ktUJ' . Note that
since X; and U; are independent and identically distributed, Y} are also independent and

identically distributed. Since X; ~ Exponential(n) and U; ~ Uniform(0,1) consider the
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probability distribution function of Y;:

1
PG <9) = [ Pt X, <yt =

1
= / P(X; < ye ™) du since X; and U; are independent
0

1
_ ktu
—/ 1—e ™ du
0

Since the range of X; is (0,00) and the range of U; is (0,1), then the range of Y; will
be (0,00). We then differentiating both sides with respect to y to obtain the following
probability density function for y > 0:

et =L [N,
ity —d?/ 0

1

= — Fete e gktu gy,
vkt J, ny

1
= —(e7W — g~

_m

Note for y < 0, fy;(y) = 0. Then the moment generating function of Y;, ®y,(u) is given
by:
o
By, () = Ee] = [ gy ()dy

:/0 %(e—ﬂy — e e gy

By letting:

kt
k*:11n<w)
t n—1u

the above can be expressed as:

k* o0 1 ok * ek*t
<I>yj(u):k/0 yk*t(e MY _ v gy
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Since f*(y) = ﬁ(e*"*y — e*"*yek*t) is a probability density function of Y; with new
parameters n* and k*, hence [>° (e "V — e‘”*yek*t = 1 which then implies that:
n 0 yk*t
k* 1 nekft —
Oy (u)=—=—In| — 3.1.7
i (u) k kt . ( n—u ( )

Finally, we can derive the moment generating function of A(¢) conditional on A(0). Note
that ® g (u) = G 4)(Py;(u)) where G, is the probability generating function for J(t).
Since J(t) is Poisson distributed with parameter pt, then using (3.1.7):

1 nekt —u
o - Sm (M)
st = (o[ (5 5) 1]
P
:e—pt nekt_s 2
n—u

Hence the moment generating function of A(t) conditional on A(0) is given by:

kt %
o—kty o [(ME™—u
D (pyja(0) (1) = O et (77 — > (3.1.8)

Consider the cummulant generating function of A(¢)|A(0):

—kt P net —u
rA)Aa©0) (1) = 10g (Paga) (v) = A0)e " u — pt + 7 log <77_u) (3.1.9)

By differentiating the cummulant generating function, the conditional mean of A(t) can

be shown to be:

E[A(6)[A(0)] = K 4yja0)(0) = (A(0) — n%)e_kt + nﬁk (3.1.10)

Similarly, the conditional variance of A(¢)|A(0) can be also shown to be:

Var(A(£)|A(0)) = K} a0 (0) = 77%(1 — ety (3.1.11)

Aside from the moments of the shot noise Cox process, it is also of interest to observe the

correlation structure of the shot noise Cox process.
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Proposition 3.1. (Covariance of shot noise process) For all s < t, the covariance of the

shot noise process conditional on A(0) is given by:

Cov(A(t), A(s)|A(0)) = ﬁik(e—k@—s) — e7k(tFa)) (3.1.12)

Proof. To prove this result, we utilise the following result from Kliippelberg and Mikosch
(1995):

Lemma 3.2. Consider the shot noise process of the following form:

J(t)
St) =Y H(t—1)
=1

where J(t) is a homogeneous Poisson process with rate p. Then given that Var(S(t)) < oo,

for any s < t, the covariance of S(t) is given by:
Cou(S(t),S(s)) = p/ E[H(u)H(u+t— s)]du (3.1.13)
0

Noting that for the classical shot noise process, H(t) = X je_k(t_TJ' ) where X j is an expo-

nential random variable with parameter 1. Then we use (3.1.13) to see that:

J(®) J(s)
Cov(A(t), A(s)[A(0)) = Cov [ > X;e H7m) N}~ xjeFomm)
i=1 i=1

_p/ E[X2e—kue—k’(u+t—s)]du
0

:p/ E[X2)e Futt=9)]qy
0

_ P —k(t—s) _ _—k(t+s)
=—(e e )
n’k

3.1.2 Stationary distribution of the shot noise intensity

It is interesting to observe the long run behaviour of the shot noise intensity. The station-
ary distribution of A(t) reflects the distribution of A(t¢) in the long run (as t — o). It can
be shown that the stationary distribution of . This is done by consider the limit of (3.1.8)
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as t — oo:

P (o0) (1) = lim Py () (u)

t—o00
P
—kt\ &
— lim MO M (T TUC
t—o00 n—u

(%)

which resembles the moment generating function of a Gamma distribution with parame-
ters £ and 7). This means that in the long run, the realisation of A(t) should resemble a

Gamma distribution.

The mean of the stationary distribution of A(¢) can also be determined by taking the
limit of (3.1.10) as t — oc:

E[A(t)] = n% (3.1.14)

Similarly, the variance of A(t) as t — oo is given by taking the limit of (3.1.11):
Var(A(t)) = =+ (3.1.15)

Remark 3.1. So far, the moments and correlation structure of the shot noise intensity
process A(t) have been derived under the assumption that A(0) is a known constant. Sup-
pose instead of treating A(0) as a constant, we assume that A(0) is Gamma distributed
with parameters £ and n. Then it can be shown that the distribution of A(t) coincides with

the stationary distribution of A(t).

To show this, consider that the moment generating function of A(¢) under this assumption
using (3.1.8):

(1) (1) = Paoy(e M u) @y (e u)

kt .\ %
b (bt t (M€ =
Ay (e u)e < p—

Since A(0) is Gamma distributed, then the moment generating function of A(0) is:

2 kt 2
— k ev'n
A (e ) (77 — e—ktu> (ektn ~ u>
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Hence:

=M

kt 7 kt
[ € ot (e —u
a(®) = (6’“77—U> ¢’ ( n—u >

(%)

which resembles the moment generating function of the Gamma distribution. This also

shows that the marginal distribution of A(¢) is the same as the assumed distribution of
A(0).

Under this additional assumption, the first and second moments of A(¢) under this as-
sumption is the same as the long run mean and variance in (3.1.14) and (3.1.15) respec-
tively. This additional assumption changes the correlation structure of A(t) however due

to the uncertainty provided by assuming A(0) is a random variable.

Proposition 3.2. Suppose A(0) is Gamma distributed with parameters £ and n, then the

covariance structure of A(t) for all s <t is given by:

Cov(A(t), As)) = n?”ke—’f@—ﬁ (3.1.16)

Proof. By using the property of conditional covariance, Cov(X,Y) = E[Cov(X,Y|Z)] +
Cov(E[X|Z], E[Y|Z]), on (3.1.12), the covariance of A(t) for s < ¢ is given by:

Cov(A(t), As)) = E [Cov(A(t), A(s)[A(0))] + Cov(E[A®)|A(0)], E[A(s)|A(0)])

=F [772’)]{(@—’%%8) — e H(tts))

 Cov ((A0) = L)+ 2 (a(0) - g4 )
— 7]2%(6_16(15_5) — e M) 4 Var(A(0)e )

= 772%(@—’“('5—5) — e k(te)y 4 Wﬁke—k(ﬁs)

- %Lke—k(t—@

O

Based on the above result, it can be seen that under the assumption that A(0) has a
Gamma distribution, the covariance between A(t) and A(s) only depends on the length

of the time interval ¢ — s. Along with Equation (3.1.14), this implies that the shot noise
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intensity at the very least exhibits weak stationarity, which implies that the shot noise Cox
process and its increments should also exhibit weak stationarity. In fact, we show in the

next section that the increments of the shot noise Cox process exhibits strict stationarity.

3.2 The increment of the shot noise Cox process

In this section, we extend the statistical properties derived and discussed in the previous
section to shot noise Cox processes. We first derive the moment generating function and
the probability mass function for the increment of the shot noise Cox process N (t) — N(s).
Using the results introduced in the previous section, the moments and correlation struc-

ture of the Cox process with shot noise intensity also are derived.
First, we define the shot noise Cox process based on the definition in Grandell (1976):

Definition 3.4. (Shot noise Cox process)

Denote {N(t),t > 0} as a shot noise Cox process with the shot noise intensity process
{A(t),t > 0} from Definition 3.1. The probability mass function of the increment N (t) —
N(s) is given by:

(3.2.1)

where M(t) is the mean value process given in Equation (3.1.5). It can be said that the
shot noise Cox process is a homogeneous Poisson process {N(t),t > 0} subordinated by

4

the mean value process {M(t),t > 0}, or in other words N(t) = N(M(t)).

The above definition of the probability mass function is expressed in terms of an increment
of the process {N(t),t > 0} as the research focuses on modelling number of events within
a time interval. Hence the statistical properties derived in this section will be based on
the increment N (t) — N(s) as they are used in the modelling procedure described in the

following chapters.

3.2.1 Moment generating function of N(t) — N(s)

In this section, we shall derive the moment generating function and the pr. Before we can

derive the Conditional on A(0), we first derive the conditional moment generating function
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of the increment of the mean value process M (t) — M(s):

Proposition 3.3. (Conditional moment generating function of M(t) — M(s))
For 0 < s <'t, the moment generating function of M(t) — M(s) conditional on A(0) is
given by:

L
k

v(,—ks —k(t
E[er(MO-ME) |5 (0)] = bl e n (1= E(eH —e )
77 — %(1 _ e*k(t*S))

o]
v —v(1 — e hl=9)) i\~
X exp (_Vp+ e (t — s)) ( ( ™ )+ (3.2.2)

Proof. In order to prove this result, we use the following result from Dassios and Jang
(2003):

Lemma 3.3. (Dassios and Jang, 2003) For the mean value process of the form in (3.1.5),

we have the Laplace transform of the increment M(t) — M(s):

E[e M O=M()|A ()] = exp (—%(1 — e_k(t_s))A(s)> exp <— /:p (1 -3 (%(1 — e_k(t_s))>>>
(3.2.3)

where §(-) is the moment generating function for X;.

Noting that since X is exponentially distributed with parameter 7, then §(u) = E[e“Xi] =

n

T Then by considering the integral in Equation (3.2.3):

’ U
I= 1- d
[ n+z<1—e—k<t—u>>) !
kt
7 | vekt
tos— S E—
p( s 1/+77k/eks u+u+nk—ye—’“u

n v+ nk — ve k(t=s)
= — 85— - 1
p(t S otk (kt ks + n( e

By substituting the above back into Equation (3.2.3) gives:

Ele "M O=M)|A ()] = exp (—%(1 - e*k(t*s))A(s)) exp < Py (t — 3))
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We can rewrite Equation (3.1.5) in the following way:

J(t) J(t)
1
M(t) = Z (A(O) + ZX]- — (A(0)e ™ + ZXjek(tTj)>
J=1 j=1

1 J(t)
i LU ;Xj — A(t)

Then considering M (t) — M (s) gives:

where we use the fact J(t) has stationary and independent increments in the above to see
that Z X is independent of A(s). Since we have shown that A(t) is Markovian, see
that for any deterministic function f: R — R, E[f(A(?))|Fs] = E[f(A(¢))|A(s)]. Hence:

J(t—s)
E[e—"MO-M)|A(s), A(0)] = B[t (T XimMOHA®) 1y () A (0)]
_ et (S 0220086 |y )

= E[eVMO=ME)|A(5)]

where we have used the Markov property of A(¢) and the independence of EJ(t ) X from

A(s). Then using the following property of conditional expectation:
E[E[e~MO=MEN|A(s), A0))|A(0)] = E[e™MO=MD|A(0)]
which implies that:

E[e~ M O=M() A (5)]|A(0)] = [E[e "M O=M() |7 (0)]
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then we take the expectation of (3.2.3) conditional on A(0) to obtain:

[Bfe 1O (©)] = Bfexp (~2(1 - =) As)) [AO)]
pv v(l — e Ft=9)) £k v
XeXp<_y+nk(t_S)) ( p? )

From Equation (3.1.8), it can be deduced that:

P

ks o v (1 _ o—k(t—s)\\ *
_ Vi ok-s) __—Z(1—e kE=9))A(0)e—kt _—ps [ 1€ +5(l—e )
E[exp( k:(l e )A(s)) ‘A(O)} =e k e ( N+ Z(1— e kE=s))

P
otk et [N E(eT e M)
n+ %(1 _ e—k‘(t—s))

Thus recombining the expressions gives:

P
Bl " MO-ME)[A (0)] = e ke e A0 [ 1F Fle™h —e M) !
n + %(1 _ €_k(t_s))

P
v v(1 — e Fl=9)y £ pk | "
xexp(—yink(t—s)> ( ( 72 )+

Substituting —v with v will give the result in the proposition. O

Remark 3.2. The above gives the moment generating function for the mean value process
M(t) given A(0) as:

D10y a0y () = E[e”M D [A(0)]

P
_ e%(e—ksie—kt)/\(o) n— %(1 _ e*k(t)) k
n—F(1—eH)

PN
pv —v(1 — e M) + k| v+
X &xp —v+ nkt nk

Then using Equation (2.2.1) from Cox (1955), the moment generating function of the Cox
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process N (t) given A(0) is given by:

DA (V) = Parya)(e” — 1)

L
_ et (1 T (L= )
W e

o (P D (= = D1 ) o) T
—(e¥ = 1) +nk nk

Suppose we assume A(0) has a Gamma distribution with parameters £ and 7. Then we can

derive the moment generating function for the increments M (t) — M (s) and N(t) — N(s):
Proposition 3.4. (Moment generating function of N(t) — N(s))

Assuming A(0) has a Gamma distribution with parameters % andn, the moment generating
function for M(t) — M(s) is given by:

.
(] — e—k(t—s) SR
E[e(MO-ME)] Z exy </’V(t _ S)> ( v(1—e ) + ”k> (3.2.4)

—v +nk nk

and hence the moment generating function for N(t) — N(s) is given by:

—p(e’—1
v o__ (v _ —k(t—s) k (—=(e¥=1)+nk)k
V(N()=N(s))] _ ple” —1) B (" =D -e )+
Ele | = exp (—(e” Dtk (t—s) p
(3.2.5)

Proof. By taking the expectation of Equation (3.2.2) with respect to A(0), by the law of

total expectation, we obtain:
E[er/(M(t)—M(S))] - E[E[€V(M(t)—M(8)) |A(0)]]

B
—E { %(e*kte*kt)/\(oq n—Y(e7ks — kD) \ ¥
‘ v “k(t—s)
n— E(l — € s )

pn
. _ —k(t—s) —v+nk
% exp ( pv (t— s)) ( v(l—e )+ nk)

—v+nk nk

From Klugman et al. (1998), the moment generating function for a Gamma(%,7) random

variable A(0) is given by:

A
=
e
—~
&

Il
N
3

WS
N
"
=M
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Hence we have:

=
5
N
oy
=
~~
)
|
=
V)
N
g
Il
7 N
|
>3
V)
m‘
x>
o~
S—
"
Eal

P
£ n— %(eiks _ efk(t)) k
n—¥(1- e h(t=s))

PN
01— o—k(t—s) ST
Xexp< pv (t—s)) ( v(l—e )+T]k‘>
n

nk

o
1 —k(t—s) otnkk
:eXP<pV (t—s))( v(l—e - )+7lk>
n

We then substitute v = ¥ — 1 into the above to obtain Equation (3.2.5). O

Remark 3.3. By letting v = —v in Equation (3.2.4), we obtain

pv

o —k(t—s) WHnkk

Eje—(MO-M()] Z exp <_ i” k(t_5)> (”(1 c : )+77k> (3.2.6)
v+n n

Hence in order to obtain the probability mass function for n claims for the Coz process,

the n'" derivative of the above equation is taken such that:

—1)"d™ s
P(N(E) = N(s) = n) = m> 2 pfer -0

v=1

In fact, (3.2.6) is the probability of no events in the time interval [s, ] which can be used
in determining survival probabilities in mortality or default times in credit risk. Since
the derivative of Equation (3.2.6) of any order will only depend on the length of the time
interval ¢t — s, this implies that the increment of the shot noise Cox process N(t) — N(s)

are stationary.

However, from large general insurance companies, there usually are a large number of
claims incurred in a small interval of time such as in a day, meaning we need to take the
large order of the derivative of (3.2.6). This implies that even over a small time increment,
there will be computational issues in attaining higher order derivatives required. This is-
sue is exacerbated when considering number of claims over larger time increments such as
weeks, fortnights and months. Hence the computational difficulty involved in finding exact

probabilities prevents this method from being used efficiently in an insurance context.
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3.2.2 Moments and correlation structure of the Shot noise Cox process

Through finding the first and second derivative of the logarithm of Equation (3.2.5) with
respect to v, one can deduce the first two central moments of N(t) — N(s) (under the

assumption A(0) is Gamma distributed) as:

E[N(t) = N(s)] = © (tn; s) (3.2.7)
k() .
Var(N(t) — N(s)) = 773’;2 (t sl . ) + ”(tnk ) (3.2.8)

Then by dividing Equation (3.2.8) by (3.2.7), the coefficient of variation can be deducted
to be:

2 1— efk(tfs)
Coefficient of variation: = — (1 — ———— | +1 (3.2.9)
nk k(t —s)
From the above, since the coefficent of variation is always greater than 1, the shot noise
Cox process is overdispersed compared to the homogeneous Poisson process. It is actually
invariant on the value of p. However, as 1 decreases, which implies the expected jump size

in the intensity increases, the level of overdispersion increases.

Since the increments are stationary, then there should be an autocovariance function for
the increments. To observed the correlation structure of the shot noise Cox process, the

covariance of the shot noise Cox process can then be found as:

Proposition 3.5. The covariance structure of the shot noise Cox process N(t) is given
for any s < t:
2ps  ple Ft peks 1 - e_k(t_s))

_ ps
Cou(N(t),N(s)) = T + T + p (3.2.10)

Proof. Using the fact Cov(X,Y) = —1(Var(X —Y) — Var(X) — Var(Y)), then see that:

1{ 2p 1 — e k(t=s) p(t—s 2p 1—ekt
Cov(N(t),N(s)):—§ <172k:2 (t—s— : + (Uk )_772]‘32 t—T

pt 2p 1—e ks pS
_ P s — _ P2
nk  n2k? k nk
2ps p(e‘kt +e ks 1 e_k(t_s)) pS

T 2k? n2k3 T
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O
Then we can find the autocovariance function of N(¢) — N(t — 1) for h =1,2,3,... as:
v(h) = Cov(N(t+h) —N({t—1+h),N(t)— N({t—-1))
= Cov(N(t+ h),N(t)) — Cov(N(t+h), N(t — 1))
— Cov(N(t—=1+h),N(t)) + Cov(N(t—1+h),N(t—1))
—kh(VE _ o—VEk)2
pe Fr(eVE — e VE)
= T (3.2.11)

The above implies a couple of features about the shot noise Cox process. Firstly, despite
having stationary increments, the shot noise Cox process does not have independent incre-
ments. Secondly, for, the autocovariance function (and hence the autocorrelation function)
of N(t) — N(t — 1) is always postive for lags greater than zero and exponentially decays
as h — oo where k is the measure of how quickly the autocovariance decays with h. This
provides a quick method to check the validity of using the Cox process on claims data by

checking the autocorrelation of the increments are positive.



CHAPTER 4

METHODS ON FITTING THE SHOT
NOISE COX PROCESS

Given that the intensity process completely characterises the doubly stochastic Poisson
process, the problem of fitting the counts process is reduced to fitting the intensity process.
This is done so by estimating the parameters p, n and k. The main issue, however, is
that only the claim counts process is actually observed while the intensity process are
latent variables. One method that could have been used to bypass the filtering problem
is to utilise the explicit expression for distribution for the number of counts over a time
increment, N(t + At) — N(t), derived in the previous chapter and used to construct a

likelihood function as follows:

L(p,n,k) = [[P(N(At(i + 1)) — N(Ati) = ny)
=1

h

where n; represents the number of counts in the n'" increment. There are two main

problems with this approach though:

e Unlike the homogeneous and inhomogeneous Poisson process, the Cox process does
not necessarily have independent increments property. In fact, we have shown that
the covariance between disjoint increments is not always zero for shot noise Cox

processes in Chapter 2. Hence the joint distribution of the claim counts in all

46
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increments cannot be simply expressed as the product of the marginal distribution

of each increment.

e Even if the independent increment assumption was valid for the Cox process, calcu-
lating the probability of n claims in a time interval relies on taking the n'" derivative
of the expression derived in the previous chapter. In high volume business lines in
general insurance such as domestic and commercial motor industries, the insurer
typically faces up to tens to hundreds of claims per day. This implies that the high
order derivatives will be required to evaluation P(N(At(i + 1)) — N(Ati) = n;),

which is computationally intensive and inefficient.

As this problem is also prevalent in areas such as finance in modelling stochastic volatility,
methods used in those fields can be borrowed. In this chapter, we will investigate two
potential methods for filtering of the intensity process. The first of these is the Kalman
filter which was first developed by Kalman (1960) and has been widely applied in finance
to model stochastic volatility. The filter, however, requires the latent intensity to follow
a Gaussian distribution which allowed for the implementation for an Ornstein-Uhlenbeck
intensity process in Rydberg and Shephard (1999). Hence, Gaussian approximations of
the shot noise intensity and claim counts process as explored in Dassios and Jang (2003)
will be required. The other popular method involves Markov Chain Monte Carlo simula-
tions. In particular, we will be discussing the method developed in Centanni and Minozzo

(2006) for filtering shot noise intensity from a shot noise Cox process.

In Section 4.1, methods of obtaining initial estimates for the parameters are developed via
a distributional approximation of shot noise Cox process along with method of moments.
Obtaining initial estimates which are close enough to the true value of the parameters
helps improve the efficiency and accuracy of the final estimate the methods converge to.
In Section 4.2, we develop a method based on the Kalman filter where we utilises the
Kalman Bucy approximation of both the shot noise intensity and Cox process in Dassios
and Jang (2005) to estimate parameters. This method is relatively quick to implement
and. Hence, in section 4.3, an alternative method based on the reverse jump Markov
Chain Monte Carlo expectation maximisation algorithm in Centanni and Minozzo (2006)
is proposed. As A(0) is unobservable, for both methods, it shall be assumed that A(0) has
a Gamma distribution with parameters £ and n as in Remark 3.1. Finally, in Section 4.4,

both heuristic and formal goodness of fit tests are provided.
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4.1 Negative Binomial Approximation of Shot Noise Cox

process

In the filtering methods for estimating parameters, the final estimates are usually depen-
dent on the initial input estimates of the parameters. Obtain good initial estimates also
allows for quicker and more accurate convergence of the estimation process to the true
parameters. Hence, a method is developed in order to obtain initial estimates of the pa-

rameters.

From Grandell (1976), the doubly stochastic Poisson process is a homogeneous Poisson
process subordinated by the mean value process. In other words, N(t) LNoM (t) where
N is a homogeneous Poisson process and M (t) is the mean value process. Then from

the following first order Taylor expansion of M (t) and noting that A(t) = d]‘il[t(t) is the

underlying intensity process:

dM(t)
dt
= M(t+A) — M(t) ~ AA(t)

M(t+A) — M(t) ~ A

Consider the following discretisation of the Cox process:

N(t+A) — N(t)

From the derivation of the moment generating function for A(¢) in the previous chapter,
we can see that the stationary distribution is Gamma distributed with parameters 7 and
n. A homogeneous Poisson process with a Gamma (a,b) distributed subordinator results

in a negative binomial process with parameters » = a and p = bi Hence, one simple

+1°
way to approximately estimate the parameters is to assume the increments of the counts

process N(A(t)A) follow a negative binomial (r,p) distribution. Noting that a = £ and
b =7, we have the following equations which give the initial estimates pg, ko and np:

p
I-p

ro
ko

where 7 and p are the estimated parameters from the negative binomial approximation.

This however presents the problem of having only two equations to solve for three pa-
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rameters. From the properties derived in Chapter 3 are used to obtain separate initial
estimates for both p and k. This could either be done using the coefficient of variation in

Equation .

4.2 Kalman Filter Approximation

In this section, a method of filtering for the unobservable intensity based on the Kalman
filter is proposed. The Kalman filter, as described in 2, is can only be applied where both
the measurable and unobservable processes are Gaussian. Hence, a Gaussian approxima-
tion of both the shot noise intensity and the counts process in Dassios and Jang (2005)
in order to apply the Kalman Filter to estimate the conditional intensity process. The
Kalman Bucy differential equations derived in Dassios and Jang (2005) for the Gaussian
approximations are then discretised in order to obtain the equations for the measurable
and unobservable processes. Then the algorithm to apply the Kalman filter to estimate

the parameters of the shot noise process is developed.

4.2.1 The state equations

In order to set up the state equations, we will discretise the Kalman Bucy approximation
of the shot noise intensity and shot noise Cox processes. Assuming that A(0) is Gamma
distributed with parameters £ and 7 and for large p, from Dassios and Jang (2005), A(t)

and N (t) are approximated with the following Gaussian processes:

Z(t) ~ A®) _p i (4.2.1)
2k

W (t) ~ w (4.2.2)
P

So we have two new processes with W (t) being the measured process and Z(t) being the
unobserved process. The large p assumption is necessary for the approximation. This is
because a large p implies a high number of jumps in the intensity process and as p tends
towards infinity, the shot noise process will have jumps at almost every instant which

means the process will more closely resemble a diffusion process.

Dassios and Jang (2005) showed that the Kalman Bucy equations for the above processes
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are given by:

dZ(t) = —kZ(t)dt + V2kd B (t) (4.2.3)
AW (t) = Z(t)dt + \/ndBa(t) (4.2.4)

where Bj(t) and Bs(t) are independent standard Brownian motion. Then Equations

(4.2.3) and (4.2.4) are then discretised (via Euler’s scheme) to the following:

Ziin — 7 = —kZs + V2KAB,
Witn — Wi = Zy + \/nAB>

where B; and B are independent standard normal random variables. In the left hand
side of the second equation in the above, the increment Wi, A — W (t) can be seen as the
Gaussian approximation of the increment in the Cox process N(t + A) — N(t) where we

let:

Y(t+A) - Wt+A - Wt
N(t+A) = Lt+A) N(t)- Gt

772% n?k
N(t+ A)— N(t) — nﬁkA

_p_
n’k
Thus the measured process is the process of the increment of the shot noise Cox process

N(t+ A) — N(t) rather than the process N(t) itself.

So by setting A = 1 in the discretised process, the Kalman filter has the following state

equations:

Ziy1 = (1 — k‘)Zt + V2kB; (425)
Yi1 = Zy + /0B (4.2.6)

The unobservable shot noise intensity is represented by Z;;; while the observed process

Y; represents the standardised increments in the count process N(t + 1) — N(t).
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4.2.2 Kalman Filter algorithm

In this subsection, the Kalman filter algorithm to filter the shot noise intensity process from
a measured process at times 1,2,..,7 is given. We first propose initial estimates for the
unobserved process Zy and its covariance Py. Then equations for both the time update
and prediction update are given which are applied recursively. Finally, the likelihood
function which is to be maximised to estimate the parameters is given. A summary of the

procedure is as follows:

1. Based on the parameter values p, eta and k, transform the observed number of claims

in each increments N(t+ 1) — N(¢) into a measurable process.
2. Obtain initial estimates of Zy and Py.

3. Apply the time update and prediction update to obtain the filtered intensity.

For a particular set of parameters p, n and k, the number of claims in the time interval
[t—1,t] are aggregated for t = 0, ..., T. The first step of the procedure is to obtain initialise
estimates for the unobserved state Zy and it’s covariance at time 0, Py. These estimates

are based on the initial estimate of A(0). Noting that:
E[A(0)] = — =E[N(t+1) — N(t)] forallt

an appropriate estimate for A(0) is the sample mean of the aggregated claims in an incre-

ment given by:

A0) = E%} N

where N, refers to the number of claims in the interval [t — 1,¢]. Also, noting that:
_ P
Var(AQ0)) = =+
which implies that:
Var(Z(0)) ~
So we set Py = 1 as an initial estimate for the covariance of the unobserved process Z;.

After initialisation, the time update is applied to Z;. From the generalised algorithm

provided in 2, the equations for the time update are the following:
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1. The prior estimate of the unobserved process for next time step:

Zt|t71 - (1 - k)Zt—l

2. The prior estimate for the covariance of the standardised intensity for next time
step:
Py = (1—k)*Po1 + 2k
Similarly, the following equations for the prediction update can be obtained:

1. The Kalman gain:

2. The posterior estimate of the unobserved process:
Zy = Zypy + Ki(Ye — Zyp—1)

where Y; — Z;;_; is known as the prediction residual.

3. The posterior covariance estimate:

P = (1—-K)Py—y

The above time updates and prediction updates are applied for ¢ = 1,...T to obtain
estimates for the unobserved process Z1, 22, ..., Zr. The values of Fy;_; are stored as
they will be used in the likelihood estimation of the process.In order to obtain the filtered
estimates of the shot noise intensity process at t = 1,...T", we substitute the Z1, Zs, ..., Zp

into the following:

A(t) = nﬁk + 20,/

where the above arrives from rewriting Equation (4.2.1).
In order to estimate the parameters p, n and k, the method of maximum likelihood is

used. Given that if the Gaussian assumption for Z; and Y; are valid, then the prediction

residual Y; — Zy;_; is Gaussian with mean 0 and variance given by the prior estimates
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Pyj;_1, Then the log likelihood function is given:

T 1 & 1 &
Wp,n, k) = =5 log(2m) — o > log) (IPyeal) — 5 D (4.2.7)
t=1
The above is then maximised with respect to the parameters p, n and k in order to obtain

the maximum likelihood estimates.

4.2.3 Validity Test for the Kalman Filter approximation

As noted before, the validity of the parameter estimates depends on the validity of the
Gaussian approximation of the intensity. One of the assumptions made for the likelihood
estimation is the normality of the prediction residual Y; — Z;;_;. So one way to test
the validity of the parameter estimates is to test the normality of the prediction residual.

Denote A; as the standardised prediction residual. Then we test the null hypothesis:
Ho: Ay ~ N(0,1)

The test statistic is given by the following Pearson correlation coefficient which compares
the correlation between the sample quantiles A(7) and theoretical quantiles ¢(i) for i =

1,...,n of the standard normal distribution:

L YRAG) - A6) - @
T (T (AG) - A2 (a() — 0)?)

where A =15 A(i) and g = 1 377 | ¢(i). For a = 0.05, we have the following critical

i=

values for o = 0.05:

n | 50 100 200
Q.05 | 0.9768 0.9873  0.9931

Table 4.1: Critical values for rg at 5% level of significance

If A; is standard normal, then the correlation between the sample quantiles and theoret-
ical quantiles should be very close to 1. Denoting the « level critical value for the test
statistic as rQ,«, we reject (H)g if rq < rg,o and the assumption and parameter estimates

is invalid. Otherwise, the parameter estimates are valid.

The Kalman filter approximation provides a quick method to filter out the unobserved

intensity to estimate the parameters. It is optimal if the Gaussian approximations for the
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shot noise intensity and Cox process are valid. However, as Dassios and Jang (2005) points
out, the approximation for the shot noise process with a Gaussian process is only valid for
large p where the shot noise intensity will start to behaving like a diffusion process. Hence,
a more robust and exact method using Markov Chain Monte Carlo method is proposed in

the next section.

4.3 Reverse Jump Markov Chain Monte Carlo method

The proposed Reverse Jump Markov Chain Monte Carlo estimation method is based on
the algorithm developed in Centanni and Minozzo (2006). It consists of two steps: filtering
the sample intensity process and maximisation of the conditional likelihood function given

the intensity process with respect to parameters via stochastic expectation maximisation.

In this section, we describe the Markov Chain Monte Carlo filtering algorithm from Cen-
tanni and Minozzo (2006) in further detail. For the stochastic expectation maximisation
step, we derive an explicit form for the conditional log likelihood function. By deriving
the gradient function and Hessian of the log likelihood function, we are able to reduce the

three parameter optimisation problem to a two parameter optimisation problem.

4.3.1 Filtering of the intensity process

Based on Equation (3.1.2) the conditional intensity is characterised by the following terms:
e The number of jumps in the shot noise process n.
e The timing of the jumps of the shot noise process {71, ..., 7, }
e The size of the jumps of the shot noise process { X1, ..., X, }
e The starting position of the shot noise process A(0)

These terms will define the state which the Markov Chain is currently in. The states
will change depending on the observed number of claim counts within each time interval.
Typical of Markov Chain Monte Carlo methods, The algorithm can be decomposed into
3 steps:

1. Choosing a type of transition.
2. Simulating a transition to a new state.

3. Accepting the new state based on the acceptance probability A.
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The above algorithm will be iterated over a large amount of times to ensure the Markov
chain converges to a stationary distribution. There will also be a burn in period to ensure
the Markov chain reaches a steady state. We will discuss choosing the number of iterations

in more detail in the next chapter through the simulation study.

4.3.1.1 Choosing a type of transition
As the states are characterised by n, {11, ..., 7} and {X;, ..., X;,}, the transitions will be
based on changing one of these values. There are 5 types of transitions:

e Birth of new jump

e Shift in starting position

e Death of a current jump

e Jump position shift

e Jump height shift

For simplicity, it is assumed that if the number of jumps in the current state is 0, then
P(Birth) = P(Start) = 0.5 while the probability of other transitions is zero. Otherwise,
it shall be assumed the probability of entering into any state is 0.2.

4.3.1.2 Simulate a transition to a new state

We now describe the algorithm used to simulate a transition into a new state.
e For the birth of a new jump,
1. Simulate a new jump time 7* on the interval [0, ¢] where 7% ~ U0, t]

2. Simulate a new jump size X™* with an exponential distribution with parameter

n

3. Then noting that if 7; < 7% < 71;11, we have the transitions:

. . . * .
M
{1y ooy Tiy Tit1s T} = {T0y eos Ty Ty Tig 1y T

{Xl, ey X, X’i+17 Xn} — {Xl, ...,Xi,X*, Xi+1; Xn}

e For the shift in starting position, simulate a gamma random variable with parameters

7 and 7 as the new starting position A*(0)
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e For the death of a current jump:
1. Given that there are currently m jumps, choose an integer [ from 1 to m.

2. Then:

{1y oy T 1, Ty Tit 1T} — {1y ooy TI— 1, TI 1y T

(X1, X, X0, X1 X ) — { X0 X, X, - X )

e For jump position shift
1. Given that there are currently m jumps, choose an integer [ from 1 to m.

2. Simulate a uniform random variable on [r;_1,7;41] to represent the new jump

time 7*.

3. Then:

*
{71 e e, T Tir e T} = {T1 oo i1, T T T )

e For jump height shift
1. Given that there are currently m jumps, choose an integer [ from 1 to m.

2. Simulate a new jump size X™* with an exponential distribution with parameter
n.

3. Then:

{Xl, ceny lel, leXl+1--~Xn} — {Xl, ...,lel, X*,Xl+1...Xn}

4.3.2 Acceptance of the new state

Let [ as the vector representing the current state {Ag, 71, ..., Tn, X1, ..., Xp} where n is
the number of jumps in the shot noise process and let 3’ be the vector representing the
next state with n’ jumps. Then Centanni and Minozzo (2006) stated that the acceptance
probability can be decomposed in the following way:
Tt n/ / n/ /
A= o Ol ) X p(n, 5) X X proposal ratio (4.3.1)
p(Tgln, B) — p(n,B)
—_—

likelihood ratio  prior ratio
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where T denotes the observed claim times on the interval [0, ¢].

For the shot noise Cox process where it is assumed A(0) is Gamma distributed, Centanni

and Minozzo (2006) expresses the conditional distribution of T{ as the following:

p(T¢|n, B) = [HA exp( / 1A 5>]exp <— T:A(s)ds>
- [EA(T’) o (- [ tA(s)ds)

where N; denotes the number of claims on the interval [0, ¢] and noting that To = 0. Given

the distributional assumptions of jump times and sizes of the shot noise process stated in

the definition of the shot noise process, the prior distribution can also be expressed as:

3 fflex —
1+AQ) p(~nA(0) Hnexp (—=nX;)pexp(—p(j — 7j-1)) | exp(—p(t —7n))

L(%) =1
EA(0)E exp(— -
_ n*A(0) r(ﬁi)( e jHlﬁeXp(—an) P! exp(—pt)

From the equation of the prior distribution, for each transition type, we can deduce the

following prior ratios:

e Birth of new jump - Since the only change lies in the extra jump size X* in the

product, then it can be deduced that the prior ratio is given by:

P L _
nkA0) k" exp(=nA(0)) {H?*llnexp( anﬂ p" 1t exp(—pt)

p(n',B) _ (P
- L L_q . n
p(n, B) nk A0k F(egc)p( nA(0)) [szlnexp(—n Xj)} o exp(—pt)

T3 nexo(-nX;)]
[Hj:l nexp(—an)]

pnexp(—nX™)

e Shift in starting position - Since the size and timing of the jumps don’t change, we
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have:

BA* 51 xp(—nA* n n
p(n’,ﬁ’) kAT () F(eg)p( nA*(0) [Hjillnexp(—an)] P GXP(_Pt)

n, EAO)E T exp(—nA n
p(n, ) nk A(0)F r(%)p( nA(0)) [szlnexp(—nXﬂ} v exp(—pt)

—exp(-(a°0) - 40) ()

e Death of a current jump - Since the only change lies in the one less jump size Xj in

the product, then it can be deduced that the prior ratio is given by

L L_q . n .
o, ) nkA(0)k - eg)p( nA(0) |:Hj:1,j;£k; nexp(—an)} p"~Lexp(—pt)
= ? 2] B
p(n, ) nkA0) F F(e%X)p( nA(0)) {H;}ZI nexp(—an)} p" exp(—pt)

[H;L:Lj;ék: n eXP(—UXj)}
[Tj— nexp(—nX;)| p

= (pnexp(—nX*))~!

e Jump position shift - Since the jump height and starting position both remain un-

changed, then we have:

7 F-1 — n n
p(n', ") - nk A(0)& F(eﬁx)p( nA(0)) [szlnexp(—an)} p" exp(—pt)

k

=1
p" exp(—pt)

- 2 L_q _ n
p(n,B)  nkA©F F(e%x)p( nA(0)) [szlnexp(—an)}

e Jump height shift - Since the only change lies in the changed jump size X to X* in

the product, we have:

EA(0) " exp(=nA(0)

p(n',8') ! T(Z) {H?:L#MGXD(—UXJ-)} nexp(—nX*)p" exp(—pt)
- P 2 _1 B -
p(n, B) nkA®0)% F(%m 1A(0)) [Hj:mexp(—n Xj)} pexp(—pt)
exp(—nX™) .
= ———= =exp(—n(X" - X;
exp(—nx,) P i)

For each types of transition, Centanni and Minozzo (2006) provides the following proposal

ratios:
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Birth of new jump:

tp(dn + 1)
(n + 1)p(bln)n exp(—nX*)

Shift in starting position

Death of a current jump

np(bln — 1)nexp(—nX™)
tp(din)

The proposal ratio of the jump position shift is equal to 1.

Jump height shift

exp(—n(X; — X7))

Hence the acceptance probability A for each transition state is given by:

e Birth of new jump:

[HzN:t1 A*(ﬂ) exp (— fg A*( )ds) . tp(djn + 1)
N T AT exp (= Jy Als)ds) e 1>pfbln>nexp(—nX*>
_ [HZN:tl A*(TJ exp (— fg A*( )ds) ) "
[Hfiﬁl A(Ty)] exp (— st A(s)ds> nt 1

where X* refers to the size of the new jump and A*(¢) represent the estimator for

the intensity function given the new jump size and jump time.
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e Shift in starting position

[H]\f A*(Tz)} exp (— fg A*(s ds)
[HfVHA }GXP< fo >
< exp(-n(A©) - A°(0) ( AA((OO)))
{Hthl A (T; )} exp ( fg A*(s ds)

T AT e (= A

A=

where A*(t) represent the estimator for the intensity function given the new jump

size and jump time.

e Death of a current jump:

)] exp (= Ji A" (s)ds) : np(bln — 1)y exp(—nX*)

- exp (— fg A*(s)ds) n
- exp (— fg A(s)ds) tp

(T2)
= exp(—nX* -1
[Hi\]:tlA(Tl) exp(_ng(S)dS> x (npexp(—nX"))"" x o)
(T3)
(T3)

where X* refers to the size of the suppressed jump and A*(t) represent the estimator

for the intensity function given the new jump size and jump time.

e Jump position shift:

i
i=1 i) | €XP
[ @] e (- foA* )ds)

(1Y AT exp (= g Als)ds)

where A*(t) represent the estimator for the intensity function given the new jump

size and jump time.
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e Jump height shift:

t
0

Jo A*(s)d

Jy Ms)ds)
IS A*(s)ds)
JEA( )ds)

where X™ refers to the changed size of the jump and A*(t) represent the estimator

[Hf\;tl A*(T;) | exp

exp

) x exp(—n(X; — X;)) x exp(—n(X; — X[))

o

exp

[e=]

e N

exp

for the intensity function given the new jump size and jump time.

In order to simplify the calculations in R, the logarithms of the above expressions were

taken. Hence the acceptance algorithm becomes:
1. Generate log(U) where U ~ U|0, 1]

2. If log(U) < log(A), the new state is accepted. Otherwise the old state is retained.

4.3.3 Stochastic Expectation Maximisation Algorithm

Once a sample of the intensity function is produced from a large number of iterations
of the Markov Chain Monte Carlo algorithm, the expectation maximisation algorithm is
used to determine the parameters. Centanni and Minozzo (2006) states the algorithm is

as following way:
1. Generate a S, sample from the RIMCMC algorithm

2. Calculate the likelihood function to be maximised is:
1
L(0) = — T Ny, X, 7.J : 0
( ) Sr ; f( y AVt A, T Jt )

Sy
1
= S—TZP(TNH > T, X, 7.J; : 0) x f(T|X,7.J; : 0) x f(X, 7.0y : 0)
=1

3. Maximise the above functions with respect to the parameters, which are n, p and k.
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We now provide the explicit form for the log-likelihood function. From the previous

section, we can see that:
P(Tny1 > T, X, 7.0, : 0)f(T|X, 7.J; : 0) = p(Th|n, B)

N¢
[T
=1

e (- | tA(s)ds)

where the first part is the density of a gamma random variable with parameters p/k and

n

fX,7.J;: 0) = p(n, B)

_ n%A(0)5 ! exp(—nA(0
I'(%)

) [T nexp(=nX;) | o™ exp(—pt)
j=1

Hence for claim arrival times T; such that 0 = Ty < 11 < ... < T, Ny <t consider the
log-likelihood process:

N(t) t
ox(Lpn ) =tog | { T[T | exp (- [ Aas)

n% A(0) %L exp(—nA(0

) [[nexp(—nX;)| p" exp(—pt)

’ o)
R~ %(t:) N; | =kT; +log | A(0) + zn:Xjek(mlTjgn B A(()>(1k_elct)
=1 =
N Jz”; X;(1— Z—kz(t—rg‘)) n %log(ﬁ) + (g — 1) A(0) — 7A(0) — log(T [%})
+ nlog(n) — nzn:Xj +nlog(p) — pt (4.3.2)
j=1

where N; denotes the number of claim counts in the interval [T;_1, T;]. This approximation
is required as in insurance data, there are multiple claims in the same day as we cannot
observe the exact time that the claim has incurred. So we let A(7;) represents the intensity

process from T;_1 to T;).

For S, = 1, this represents the stochastic expectation maximisation algorithm as noted
in Centanni and Minozzo (2006). For large values of S, this algorithm becomes similar

to that of the deterministic expectation maximisation algorithm. Although Centanni and



CHAPTER 4. METHODS ON FITTING THE SHOT NOISE COX PROCESS 63

Minozzo (2006) states that the stochastic expectation maximisation algorithm does not
guarantee pointwise convergence, applying a deterministic expectation maximisation al-
gorithm means that multiple samples of the jump sizes, jump times and starting values
which represent the state the Markov chain is in need to be stored. As S, increases, storing
multiple samples of the becomes unfeasible while computation time becomes unreasonable,
especially with lengthy data where the number of jump sizes and jump times are large.

Hence, we choose to sacrifice some accuracy to ensure that the method remains efficient.

4.3.4 Reduction to two parameter optimisation

In this section, we derive the gradient vector and Hessian matrix of the log-likelihood
function. The main reason behind this is that it allows the use of computationally quicker
optimisation methods such as the quasi-Newton method which requires the gradient and
Hessian matrices. In the process, we are able to derive the conditional maximum likelihood
estimate of the jump size parameter 1 with respect to the other 2 parameters and other
simulated variables. Hence, this reduces the optimisation problem from three parameters

to two parameters.

T
Then the gradient vector will be (aloagp(L), moagn(L), moagk(L)) where:

dlog(L) _ log(n) L /py 7
By = A0~y (£)+ St (4.3.3)
Odlog(L) p n o —
O P _Noy+ 2N x;, 4.3.4
= A0+ ; j (4.3.4)
Dlog(L) W

Z N —T + Z‘;Lzl XjTjeij ]-T]'ST'L n A(O)(]_ _ e—kt + kte_kt)
ok = CUA0) + 3 Xjehti o, 12

(4.3.5)

"A0)(1 — e R 4 k(t — 7;)eR(E=Ts) lo A0
'y (0)( ;;(t ;) ) ol g(nli;r ())Jrkgw(:)

where ¢(z) = % log(T'(x)). Note that equating Equation (4.3.5) to zero implies that:

P+n
n= n
AQ0) + >0, X;

(4.3.6)

which will always be positive provided that p > 0 and k£ > 0. We note that the expected
value of the number of shots n is given by pt, the expected value sum of the jumps > 7" ;| X;

is %t and under the Gamma assumption, the expected value of A(0) is %. It can be seen
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that by substituting these values into (4.3.6), the maximum likelihood estimate of 7 is

actually consistent with these estimates of the simulated parameters.

Then the Hessian matrix can then be derived as following:

8%log(L) 02%log(L) 02%log(L)

0p2 Opdn 0pok
H = 8%log(L) 02%log(L) 02%log(L)
dpdn on? onok
8%log(L) 02%log(L) 02%log(L)
Opok onok Ok2
where
0?log(L) n 1 p
02 2 @™
0 k
9?log(L) 1
opdn  kn
&log(L) _ log(n) 1 rp\,  p (P
s~ v (1) T ()
d%log(L) _p N
R
d%log(L) 2
ook k?p

) 2
Plosll NZ: Z] | XjTPet il <, + >y Xjiet 1 <,
Cok2 —|— Z 1 X ekril 'r <T; (0) + Z?:l Xje’”j 17—]. <T;

n A(0)(2e7Ft — 2t2e R — 2) N Zn: X;j(2e7Rt=m) — k2(t — 7;)2e k() — 2)

=1

k3 k3
j=1
2p(log(n) + A(0)) p>op
k3 ¢( ) i <k)
where ¢ (z) = % log(T'(x)) Noting that:
dO*log(L)  p n
o T P 2l

which implies that (4.3.6) maximises L with respect to 7.

4.4 Goodness of fit tests

Generally, likelihood is the one of the main comparison tool of goodness of fit from var-

ious models or various fitting methods. However, the likelihood function for the Markov
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Chain Monte Carlo method is based on the conditional probability of observing the claim
process, while the likelihood function for the Kalman filter looks at the distribution for
the prediction residual. Hence using the likelihood value to compare the goodness of fit
for both methods is not valid. In this section, we propose some heuristic methods to check
the goodness of fit of parameters as well as provide more formal goodness of fit tests based

on distance tests Dachian and Kutoyants (2008).

4.4.1 Comparing moments and autocovariance functions

We first provide some heuristic methods to check the goodness of fit of the shot noise Cox
process based on the parameter estimates. Although these methods have not been proven
in a formal, they still provide useful information for the modeller. A quick diagnostic
for goodness of fit is to compare the implied mean and variance of number of claims in
an increment based on the parameter estimates compared to sample mean and variance
from the dataset. Another heuristic method which is inspired to the minimal contrast
estimation method applied in physical sciences is to compare the implied autocovariance
function derived in Equation (3.2.11) with the empirical autocovariance in the time interval
[0,T]. The empirical autocovariance function is given by the following:
| Tl i )
() =7 D (N = N)(Ve = N)

t=1

where N; represents the number of counts in the time interval [t — 1,] while N represents
the average number of counts over all increments. If the model fits well, the model should

exhibit a similar covariance structure to the covariance structure of the data.

4.4.2 Distance statistics
More formally, we wish to test the following:
Ho:At)=A; t>0 vs Hi:A@l)#A t>0

Then consider the empirical mean value process for a dataset divided into n sub-intervals
defined in the following way:

n—t+1
- 1

M(t) = p—, g # of events in the time interval [i,i +¢ — 1) (4.4.1)
n —_—
=1
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Then the two statistics proposed in Dachian and Kutoyants (2008) which can be used to

compare goodness of fit between the models are:

1 . -
= M(t) Osglgg)JM(s) — M(s)| (4.4.2)
2 " tAs—~32 (s

V., = ()2 /0 (M(s) — M(s))“dM(s) (4.4.3)

where M (t) denotes the fitted mean value process. Noting that the that for both the
Markov Chain Monte Carlo simulation and the Kalman filter, we can consider the fitted

mean

These statistics is analoguous to the Kolmogorov Smirnov and Anderson Darling test
statistics and hence have a similar interpretation. A smaller value in the distance statis-
tics indicate a smaller discrepancy of the fitted value from the model and hence a better
fit. The Kolmogorov Smirnov test however focuses only on the largest discrepancy of the
fitted mean value process while the Anderson Darling test statistic focuses on the overall

discrepancy of the fitted mean value process.



CHAPTER 5

COMPARATIVE STUDY OF MODEL
FITTING METHODS

This chapter provides a simulation study in order to compare the methods discussed in
the previous chapter to fit claim counts data. The study also highlights computational
issues involved in applying both methods which are discussed and any calibrations made to
improve the efficiency and accuracy of the methods are justified through this study. More
specifically, for the quicker Kalman filter approximation method, the study also serves to
observe the importance of the large p assumption on the validity of the estimates. For the
more computationally intensive Markov Chain Monte Carlo method, we propose methods
to overcome convergence issues in implementation as well as ways to improve efficiency of

the algorithm without sacrificing accuracy of estimates.

Section 5.1 proposes an algorithm for simulating sample paths of the shot noise inten-
sity for given parameter values p, n and k which is then used to simulate the shot noise
Cox process. For the comparative study, we consider two cases based on the relative fre-
quency of arrival of the shots in the intensity process. Since the parameter p represents
the average number of shots in 1 time unit, the frequency is reflected in the value of p.
The relatively low frequency case is reflected by a small p while a higher frequency case
is reflected by a higher p. In Section 5.2, the Kalman filter is used to fit the shot noise

Cox process to both cases while in section 5.3, the Markov Chain Monte Carlo method is

67
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used. A summary of the comparative performance of both methods is then provided in
Section 5.4 using goodness of fit tests provided in Chapter 5.2.1. Implementation of this

case study is all done in the statistical software package R.

5.1 Simulating the shot noise Cox process

In this section, we propose a method for simulating a sample path of the shot noise in-
tensity process. Then arrival times of a inhomogeneous Poisson process can be simulated
from the sample path in order to generate a sample of arrival times for the shot noise Cox
process. Then the arrival times are aggregated to represent the number of events per time

interval.

In order to simulate the claim count process N(t) over a time interval [0,7] with pa-

rameters p, n and k, the intensity process A(t) is generated in the following way:
1. Simulate the number of jumps J(7T') with a Poisson (pT") random variable.

2. For the j* jump, simulate the jump size X j with an Exponential random variable

with parameter 7.

3. Conditional on the number of jumps in a homogeneous Poisson process in the time
interval [0, T, the arrival times have a uniform (0, T") distribution. Hence for the j**

jump, simulate the conditional jump time 7; with a Uniform (0,7") distribution.

4. For t = 0,t1,t9,...,T, a realisation of the intensity can be found by the following

formula:

J(T)
A(t) = A0)e ™™ + > Xje Mimmln,,
j=1

Once the realisation for the intensity A(t) is found, the number of claims per period can
be simulated by adapting the simulation algorithm for claim arrival times described in
Cizek et al. (2011):

1. Set A = max(A(t))
2. Set T* =0
3. While T* < T

(a) Generate an exponential random variable E with intensity A.
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(b) Set T* =T* + E
(c) Generate a uniform [0, 1] random variable U

(d) IfU < #, T* is recorded as a claim arrival time.

The above algorithm generates the arrival times of the shot noise Cox process. For mod-
elling purposes however, the aggregate number of events over various time intervals are
needed. Hence we partition the time interval [0, 7] into n intervals [t;, t;+1],7 = 0,..,n—1.
Then the number of claim arrival times lying in [t;, ;1] will represent the number of

claims in that time interval denoted by the increment N (t;1+1) — N (¢;).

For the comparative study, the parameters for the low shot frequency case are p = 1,
n =1 and k = 1 while for the high frequency case, the parameters are p = 100, n = 1 and
k = 1. Using the above algorithm, sample paths for the shot noise intensity A(t) and Cox
process N (t) for the times ¢ = 1,2,..,100. The simulated sample paths of the shot noise
intensity A(t) and Cox process N (t) for the low shot frequency case are shown in Figure
5.1 and in Figure 5.2 for the high shot frequency case. It can be seen that for the low
frequency case, the evolution of the Cox process N(t) is much less consistent compared
to when p is large. This is due to the fact for smaller p, the shot noise intensity will
decay for longer before another shot in the intensity. Hence the sudden acceleration in the
growth of the count process N(t) due to peaks in the shot noise intensity A(t) is much

more apparent in the case when p is small than when p is large.

Simulated counts process N(t) (rho=1, k=0.5, eta=1) Simulated intensity process Lambda(t) (rho=1, k=0.5, eta=1)

150 200

N_t
100
Lambdalt)

Time Time

Figure 5.1: Simulated Intensity process A(t) and counts process N(t) (p =1, 7 =1 and
k=1)
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Sample counts process N(t) (rho=100, eta=1, k=0.5) Sample intensity process N(t) (rho=100, eta=1, k=0.5)
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Figure 5.2: Simulated Intensity process A(t) and counts process N(t) (p = 100, n = 1 and
k=1)

5.2 Kalman filter

In this section, the shot noise Cox process is fitted to the simulated aggregated claims
datasets using the Kalman filter method developed in 5.2.1. In both cases, the validity of
the Gaussian approximation for the Kalman filter is tested using the method described in

Chapter 5.2.1, where the importance of the large p assumption becomes apparent.

5.2.1 Low frequency case

In the case where p =1, 7 =1 and k = 0.5, we first obtain the initial estimates using the

method described in Section 4.1 in Chapter :
po = 1.12,10 = 1.23, ko = 0.6

For the Kalman filter, the final estimates are senstive to the initial estimates. To see
this, the method is applied for different initial values of the parameters as shown in 5.1:
It also shows that parameter estimates for p is sensitive to it’s initial estimate. This
highlights the importance of good initial estimates for the parameters and hence the de-

velopments made in Section 4.1 in 5.2.1 play a significant role in the estimation procedure.

Table 5.2 shows the estimates of each parameter with the standard errors of the parame-
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Initial parameters p P p
po=10,70 =1,kp =0.5 | 6.50 | 1.65 | 0.65
po=0950,m0 =2,kg =0.05 | 38.10 | 8.29 | 1.85
po=100,170 =0.2,kg =2 | 78.11 | 9.56 | 2.62

Table 5.1: Final values for Kalman filter for different initial estimates

ters. The log-likelihood for the parameter estimates is —1082.31. The filtered intensity
process at the estimated parameters can be compare with the actual simulated intensity
process. This is shown in Figure 5.3. The fitted intensity appears to match the true

intensity process quite well.

p (s.e) n (s.e) k (s.e)
Actual 1 1 0.5
Kalman fit | 1.15 (0.093) | 0.83 (0.045) | 0.56 (0.027)

Table 5.2: Kalman filter parameter estimates for low shot frequency case

Now we address the validity of these estimates based on the assumption. Based from the
QQ-plot in 5.4, it can be seen that the standardised prediction residuals of the Kalman
filter does not appear to follow a standard normal distribution. More formally, the null
hypothesis Ho : rg ~ N(0,1) is tested where r¢g is the Pearson correlation coefficient
between the sample and theoretical quantiles. The test statistic is evaluated to be rg =
0.77 which is less than the critical value rg, = 0.9873 (see Table 4.1). Thus the null
hypothesis is rejected and there is significant evidence that the prediction residuals do not
follow a normal distribution. Hence, in the case for p = 1, the Gaussian approximation is

not reliable and hence it can be seen that the estimates for a Kalman filter are not reliable.

5.2.2 High frequency case

Table 5.3 shows the estimates of each parameter with the standard errors of the parame-
ters. The log-likelihood for the estimates is —2122.31. The filtered intensity process at the
estimated parameters can be compare with the actual simulated intensity process. This is
shown in Figure 5.9. Once again the fitted intensity appears to match the true intensity

process quite well.

Once again, the validity of the Gaussian approximation will be tested in the case where
we have large p, which is the condition Dassios and Jang (2005) stated the approximation

is valid. Based from the QQ-plot in 5.6, apart from the upper tail, it can be seen that the
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Lambda t

Figure 5.3: Fitted Kalman (red) vs Actual (black) intensity process (p = 1)

Table 5.3: Kalman filter parameter estimates for high shot frequency case

True Intensity (black) vs Kalman Intensity (red)

60

Time

80 100

p (s.e) 7 (s.e) k (s.e)
Actual 100 1 0.5
Kalman fit | 91.84 (5.13) | 0.75 (0.071) | 0.59 (0.03)

standardised prediction residuals of the Kalman filter seem to follow a standard normal

distribution. Once again, we formally test the null hypothesis Hg

:rg ~ N(0,1) where

rg is the Pearson correlation coefficient between the sample and theoretical quantiles.

The test statistic is evaluated to be rg = 0.9881 which is greate than the critical value
rQ,a = 0.9873 (see Table 4.1). Thus the null hypothesis is accepted and the prediction

residuals appear to follow a normal distribution. Hence, in the case for p = 1, the Gaussian

approximation is valid and hence it can be seen that the estimates for a Kalman filter are

reliable.
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QQ-Plot of the Residuals (rho=1)
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Figure 5.4: QQ-plot for the standardised prediction residuals from Kalman filter (p = 1)
5.3 Reverse Jump Markov Chain Monte Carlo method

We now apply the Markov Chain Monte Carlo method describe in Section 4.3 in Chapter
5.2.1 to the dataset. In this section, issues regarding computational efficiency and accuracy

of the algorithm will be explored and methods are developed to overcome these issues.

5.3.1 Minimum number of iterations required

The first step in implementing the Markov Chain Monte Carlo algorithm is to deter-
mine the number of stochastic expectation maximisation iterations and also the number
of Markov Chain Monte Carlo filtering steps for each expectation maximisation iteration.
As noted previous, the parameter p reflects the expected number of shots in the intensity
for a unit of time which implies there should be on average p1' shots in the intensity
process over the time interval [0, T]. Since for each transition in the Markov Chain Monte
Carlo algorithm, the number of shots in the filtered intensity can only go up by 1 if the
chosen transition is a birth transition. In order for the filtered intensity to converge, a

large enough period is required in order for the number of shots to reach a stable level at
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Fitted intensity (red) vs True intensity (black)
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Figure 5.5: Fitted Kalman (red) vs Actual (black) intensity process

around pT. Too many iterations of the Markov Chain Monte Carlo algorithm makes its

implementation needlessly inefficient.

In order to improve the efficiency of the MCMC algorithm without sacrificing accuracy,
one can estimate the number of iterations required for the Markov Chain Monte Carlo
algorithm to burn in. Given the transition probability assumptions in Chapter 5.2.1, for
each Markov Chain Monte Carlo step, the probability of choosing a birth transition 20%
of an intensity jump occurring. Thus, for the filter to be able to fully converge, sufficient

amount of iterations for the algorithm is required such that:

Minimum number of iterations x P(birth transition) = pT'

= Minimum number of iterations = 5pT

The p in the above will be the initial estimate obtained from the method described in
Section 4.1. Hence, for larger p, one expects a larger burn in period as compared to a
smaller p. For T' = 100 and p = 1, the minimum number of iterations required for the
Markov chain to start to stabilise is around 500. In contrast, for p = 100, the minimum
number of iterations required for the Markov chain to start to stabilise is around 50000.
However, considering that there is also a chance of suppression of a shot through a death

transition, the number of iterations actually used should be higher than the minimum
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QQ-Plot of the Residuals (rho=100)
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Figure 5.6: QQ-plot for the predictive residuals from Kalman filter (p = 100)

number of iterations.

5.3.2 Reparameterisation of the Likelihood

For the MCMC algorithm, 100 iterations of the stochastic expectation maximisation algo-

rithm were ran. For each EM iteration, there were 5000 iterations of the MCMC algorithm

which included a burn in phase of 1000 iterations. The corresponding estimates from the

simulation study can be seen in the table:

Method

p

Ui

k

Neg log likelhood

P
kn

Original MCMC estimates

1.4 x 10714

1540

4.77 x 1018

34.7

1.92

Based from the above table, the parameters estimates are shown to be very unrealistic

and inaccurate. A very small rho with a very small k£ implies that the shot noise process

will have almost no jumps with very slow decay. This means the filtered process behaves

like a decreasing exponential function and as implies the number of claims per time unit

will decrease with time. The Hessian matrix was almost singular which implied that there
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was a lack of convergence in the algorithm and hence the parameter estimates are invalid.
Despite the divergence of p and k from the true values, see that the expected number of

counts per time unit implied by the parameters are given by:

E[N(t+1) — N(t)] = ﬁk =1.92

n
which is close to the value implied by the true parameters. This can also be explained
by the fact p and k have a tendency to move in a similar pattern. As p increases, there
would many more jumps in the intensity. In order to revert the intensity back to its mean
level, k would also need to increase as well decay the jumps more quickly. Hence the ratio
of p and k is generally preserved. This motivates the following reparametrisation of the

likelihood with respect to a and 8 such that:

5.3.3 Low frequency case study

Based on the parametrisation, the fitted parameters with the standard errors in brackets
are shown in Table 5.4. Figure 5.7 shows the fitted intensity process filtered by the MCMC

algorithm against the true intensity process.

p 7 k Log likelihood ﬁ
MCMC alternative parametrisation | 0.9212 | 0.9513 | 0.4315 —986.72 2.24

Table 5.4: MCMC parameter estimates for low shot frequency case

The convergence of the parameters can be shown in the graph below: From the above,
there is some semblance of convergence of the stochastic expectation maximisation algo-
rithm for a large enough number of iterations. As mentioned in Centanni and Minozzo
(2006), the stochastic expectation maximisation algorithm does not guarantee pointwise
convergence, however, there is convergence to a small enough parameter space in which

the true parameters lie.

5.3.4 High frequency case study

The log-likelihood for the estimates is —24122.31. The following table gives the estimates

for the parameters.
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True Intensity (black) vs MCMC Intensity (red)
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Figure 5.7: Fitted Intensity from MCMC (red) vs Actual (black) intensity process (rho =

1)

p (s.e) n (s.e) k (s.e)
Actual 100 1 0.5

MCMC fit | 93.15 (4.23) | 0.78 (0.082) | 0.53 (0.01)

Table 5.5: MCMC parameter estimates for low shot frequency case
5.4 Comparison of the two methods
As we have demonstrated that for a low frequency data, the Kalman filter estimates are

not valid as the prediction residual are not normally distributed, we shall only compare

the methods in the case of high frequency data. Based on Table 5.6, despite the fact

p (s.e) n (s.e) Ek (s.e) Likelihood

Actual 100 1 0.5
Kalman fit | 91.84 (5.13) | 0.75 (0.071) | 0.59 (0.03) | —2122.31
MCMC fit | 93.15 (4.23) | 0.78 (0.082) | 0.53 (0.01) | —24122.31

Table 5.6: Comparison of the methods in high frequency case

that the Kalman filter method has a better log likelihood (as expected for large p), the
MCMC parameter estimates were closer to the true parameter estimates. As mentioned in
the previous chapter, both methods utilise different likelihood functions the log likelihood

may not be the best measure of goodness of fit. Hence, we use the goodness of fit tests
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Figure 5.8: Convergence rate of parameters where p =1, =1, k=0.5

High frequency KS | High frequency AD
Kalman fit 0.29 0.36
MCMC fit 0.28 0.37

Table 5.7: Goodness of fit statistics for high frequency case

described in Chapter 5.2.1 to compare the two methods in the high frequency case.
From Table 5.7, for the high frequency data indicated with a high value of p, both data
sets yield distance statistics which are very close together. This further demonstrates that

for large p, the Gaussian approximation of the shot noise process becomes more valid.

In this chapter, we have shown for low frequency data which exhibits a small p, We have
demonstrated that if p is expected to be large, then since the results from the Kalman
filter does not differ from the Markov Chain Monte Carlo method by much, the Kalman
filter would be preferable due to its quick implementation. There are other practical issues
inherent in insurance claims data which need to be considered when fitting the shot noise

Cox process.
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CHAPTER 6

CONCLUSION

6.1 Summary of main contributions

In this thesis, we explore the use of the shot noise Cox process as a robust claims model
which allows for stochasticity in the claim arrival rate. In particular, we have investigated
and applied methods to fit these processes to real insurance claims data. The majority
of the current literature focuses on using doubly stochastic Poisson processes in a non
life insurance context on pricing and ruin probability calculations in a purely theoretical
setting. Although doubly stochastic Poisson processes have been fitted in other areas such
as finance, longevity and physical sciences, the methods used in these fields cannot be
directly applied to non-life insurance due to the different nature of the problem. Hence

a new framework for fitting shot noise Cox processes to non-life insurance data is required.

Firstly, we have explored and derived some statistical features of the shot noise Cox
process. In particular, the moment generating function and the correlation structure of
the increments of shot noise Cox process are derived which are required in the fitting

procedure of real life insurance data.

We have provided details of two methods for fitting shot noise Cox processes through
extending popular methods in other relevant fields for filtering latent variables. Based on

a Gaussian approximation of the shot noise intensity and Cox process, we have developed
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a framework to use Kalman filter as a quick and efficient method to estimate parameters
for the shot noise Cox process. We have also comment on the validity of the approxima-
tion and proposed a method to check the validity of these parameter estimates by testing
the normality of the prediction residuals. The other method we use is the reverse jump
Markov Chain Monte Carlo algorithm with stochastic expectation maximisation. Through
deriving the conditional log-likelihood, its gradient vector and Hessian matrix, we are able
to derive the conditional maximum likelihood estimate for n based on the filtered intensity
and other two parameters. This reduces the dimension of the optimisation problem and

hence has improved the efficiency of the stochastic expectation maximisation procedure.

Through a simulation study, we have calibrated the model fitting procedure to improve
the efficiency and accuracy of the methods. Reliable initial estimates are obtained through
a combination of method of moments and approximating the distribution of the shot noise
Cox process. In particular for the Markov Chain Monte Carlo method, we deal with
convergence issues in the algorithm through reparameterisation of the problem as well as
discuss the number of iterations to balance computational efficiency and accuracy of the
parameter estimates. Finally we further explore practical considerations for fitting shot
noise Cox processes through a comprehensive demonstration on real general insurance

data.

6.2 Areas for further research

Through developing methods to fit shot noise Cox processes, this research has laid the
foundation for various extensions. This thesis consider fitting the doubly stochastic Pois-
son process with a shot noise intensity where the stochasticity in the claim intensity only
arrives as positive jumps. An immediate extension on this work would be to explore
methods to fit doubly stochastic Poisson processes with other stochastic processes for the
intensity such as affine diffusion processes. This would increase the flexibility of the doubly
stochastic Poisson process for the modeller and from an insurer’s perspective, they would
be able to select the intensity process which reflects the nature of the claim arrivals for
each line of business most accurately. This also means that methods to compare the fits of
doubly stochastic Poisson processes with different intensities would need to be expanded

as well as both qualitative and quantitative selection criteria.

As mentioned in the introduction, from an insurer’s perspective, a more accurate claim

count model would allow for more accurate pricing, reserving and economic capital calcu-
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lations. Although there has already been theoretical developments on using Cox processes
in pricing and probability of ruin, stochastic reserving using doubly stochastic Poisson
process is a potential area for future research. Doubly stochastic Poisson process can
also be used to model the claim settlement process for the insurer. For each policy, the
claim settlement rate is generally decaying with time as more claims are settled until an-
other event causing the need for more settlement payments occur. This means that shot
noise Cox processes are natural models for the claim settlement process as the shot noise

intensity reflects the behaviour of rate at which claims are settle for a policy.
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R CODE

Kalman Filter

Kalman filter code:

ShotKalman <- function(parameter) {
#Initialise parameters

rho = parameter[1]

eta = parameter[2]

k = parameter[3]

#Transform observed data (Dassios Jang 2005)
X = (data-rho/(k*eta))/sqrt(rho/(k*eta”2))

Z=rep(0, length(data))
Z[1]=(mean(data)-rho/k/eta)/sqrt(rho/ (k*eta"2))
P=1

Pvect=P

Vvect=X[1]-Z[1]

#Filter part
for (t in 1:(length(data)-1)) {

#Time Update

Z[t+1] = Z[t]1*(1-k)

P = (1-k)"2xP +2xk
Pvect<-c(Pvect,P+eta)
#Measurement Update

K = P/(P+eta)

Vvect=c(Vvect, X[t+1]-Z[t+1])

87
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ZIt+1] = Z[t+1] + Kx(X[t+1]1-Z[t+1])
P = (1-K)*P
}

#Retransform data
Lambda = Z*sqrt(rho/(eta”2%k)) + rho/(etaxk)

#EM Part

nlloglik <- length(data)*0.5*log(2*pi)+0.5*sum(log(Pvect))+
0.5*xsum(log(Vvect~2/Pvect))

return(nlloglik)

#return(Lambda)

#return(rbind (Vvect, Pvect))

}

MCMC

for (ites in 1:100) {

#Initialise states

jumpT<-c() #Jump times
jumpS<-c() #Jump size
n<-0 #Number of jumps

#Loop starts where we observe 1 year
for(count in 1:5000) {

#Choose transition

randU<-runif (1)

#In case where there are no jumps:
if (n==0) {

lambda<-function(t) { #Use log likelihood
log(lambda0)-k*t

+

intlambda<-function(t) {
1/k*1lambdaO* (1-exp (-k*t))

}

if (randU<0.5) { #Choose birth
#Generate new state

newTime=runif (1,0,length(data))
newSize = rexp(l, gamma)
jumpTnew=c (jumpT, newTime)
jumpSnew = c(jumpS, newSize)
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#Create function for changed

lambdanew<-function(t) {

lambdaO*exp (-k*t)+sum( (t>jumpTnew) * jumpSnew*exp (~k* (t>jumpTnew)
*(t-jumpTnew)))

}

intlambdanew<-function(t) {

1/k* (lambdaO* (1-exp (-k*t) ) +sum ((t>jumpTnew) * jumpSnew* (1-exp (-k* (t>jumpTnew)
*(t-jumpTnew)))))

}

evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-lambda(count1)

}

evallambdanew<-c()

for(countl in 1:length(data)) {
evallambdanew[count1]<-log(lambdanew(count1))

}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))-
sum(data*evallambda)+intlambda(length(data))

prior_rat = log(dexp(newSize, gamma))+log(rho)

proposal_rat = log(length(data)/(n+1))-log(gamma)+gamma*newSize
accept_rat = likelihood_rat+ prior_rat+proposal_rat

#Acceptance of new state
accept_rand= log(runif (1))
if (accept_rand<accept_rat) {
jumpT = jumpTnew

jumpS = jumpSnew

n=n+1

X

b

else {#Choose shift
#Generate new state
lambda0O0 = rgamma(l, rho/k, gamma)

#Create function for changed

lambdanew<-function(t) { #Use loglikelihood in case k gets large
log(lambda00)-k*t

}

intlambdanew<-function(t) {

1/k*1lambda00* (1-exp (-k*t))

}

#Compute likelihood ratios
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evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-lambda(count1)

3

evallambdanew<-c ()

for(countl in 1:length(data)) {
evallambdanew[count1]<-lambdanew(count1)

}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))-
sum(data*evallambda)+intlambda(length(data))

accept_rat= likelihood_rat #Prior and proposal multiply to 1

#Acceptance of new state
accept_rand= log(runif (1))
if (accept_rand<accept_rat) {
lambdaO=1ambda00

}

}

}

else { #In case where there is a jump

#Create function for lambda

lambda<-function(t) {

lambdaO*exp (~k*t)+sum( (t>jumpT) * jumpS*exp (~k* (t>jumpT) * (t-jumpT) ))
}

intlambda<-function(t) {

1/k* (lambdaO* (1-exp (-k*t))+sum( (t>jumpT) * jumpS* (1-exp (~k* (t>jumpT)
*(t-jumpT)))))

}

#Choose transition type

if (randU<0.2) { #Choose start
#Generate new state

lambda0O = rgamma(l, rho/k, gamma)

#Create function for changed

lambdanew<-function(t) {

lambda00*exp (~k*t)+sum( (t>jumpT) * jumpS*exp (~k* (t>jumpT) * (t-jumpT) ))
}

intlambdanew<-function(t) {

1/k* (lambda00* (1-exp (~k*t) ) +sum ( (t>jumpT) * jumpS* (1-exp (~k* (t>jumpT)
*(t-jumpT)))))

}

#Compute likelihood ratios
evallambda<-c()
for(countl in 1:length(data)) {
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evallambda[count1]<-log(lambda(count1))

}

evallambdanew<-c()

for(countl in 1:length(data)) {
evallambdanew[count1]<-log(lambdanew(count1))

}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))
- sum(dataxevallambda)+intlambda(length(data))

accept_rat= likelihood_rat

#Acceptance of new state
accept_rand= log(runif (1))
if (accept_rand<accept_rat) {
lambdaO=1ambda00

}

+

else if (randU<0.4) { #Choose position
#Generate new state
A=sample(1l:n, 1)

min=0

max=length(data)

if (A>1) |

min=jumpT [A-1]

}

if (A<n) {

max=jumpT [A+1]

}

Timeshift=runif (1, min, max)
jumpTnew = jumpT

jumpTnew [A]=Timeshift

#Create function for changed

lambdanew<-function(t) {

lambdaO*exp (-k*t)+sum( (t>jumpTnew) * jumpS*exp (~k* (t>jumpTnew)
*(t-jumpTnew)))

3

intlambdanew<-function(t) {

1/k* (LlambdaO* (1-exp (~k*t) ) +sum( (t>jumpTnew) * jumpS* (1-

exp (~k* (t>jumpTnew) * (t-jumpTnew) ))))

}

#Compute likelihood ratios
evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-log(lambda(countl))
}



BIBLIOGRAPHY

evallambdanew<-c ()

for(countl in 1:length(data)) {

evallambdanew [count1]<-log(lambdanew(countl))
}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))
- sum(data*evallambda)+intlambda(length(data))
accept_rat= likelihood_rat

#Acceptance of new state

accept_rand= log(runif(1))

if (accept_rand<accept_rat) {

jumpT=jumpTnew

}

}

else if (randU<0.6) { #Choose height
#Generate new state

A=sample(1l:n, 1)
Positionshift=rexp(l, gamma)
jumpSnew = jumpS
jumpSnew[A]=Positionshift

#Create function for changed

lambdanew<-function(t) {

lambdaO*exp (~k*t)+sum( (t>jumpT) * jumpSnew*exp (~k* (t>jumpT) * (t-jumpT) ))
}

intlambdanew<-function(t) {

1/k* (lambdaO* (1-exp (~k*t))+sum( (t>jumpT) * jumpSnew* (1-exp (~k* (t>jumpT)
*(t-jumpT)))))

}

#Compute likelihood ratios

evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-log(lambda(count1))

+

evallambdanew<-c()

for(countl in 1:length(data)) {
evallambdanew[count1]<-log(lambdanew(count1))
}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))-
sum(data*evallambda)+intlambda(length(data))
accept_rat= likelihood_rat

#Acceptance of new state

accept_rand= log(runif (1))

if (accept_rand<accept_rat) {

jumpS=jumpSnew

}



BIBLIOGRAPHY 93

else if (randU<0.8) { #Choose birth
#Generate new state

newTime=runif (1,0,length(data))

newSize = rexp(l, gamma)

jumpTnew=c (jumpT, newTime)

jumpSnew = c(jumpS, newSize)

#Sorting the jumps in order
jumpdata<-data.frame (jumpTnew, jumpSnew)
datasort<-jumpdata[with(jumpdata, order (jumpTnew)),]
jumpTnew= datasort$jumpTnew

jumpSnew= datasort$jumpSnew

#Create function for changed

lambdanew<-function(t) {

lambdaO*exp (-k*t)+sum ( (t>jumpTnew) * jumpSnew*exp (~k* (t>jumpTnew) * (t-jumpTnew) ) )
}

intlambdanew<-function(t) {

1/k*(lambdaO* (1-exp (~k*t) ) +sum( (t>jumpTnew) * jumpSnew* (1-exp (~k* (t>jumpTnew)
*(t-jumpTnew)))))

}

evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-log(lambda(count1))

}

evallambdanew<-c()

for(countl in 1:length(data)) {
evallambdanew[count1]<-log(lambdanew(countl))

}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))-
sum(data*evallambda)+intlambda(length(data))

prior_rat = log(rho)

proposal_rat = log(length(data)/(n+1))

accept_rat = likelihood_rat+ prior_rat+proposal_rat

#Acceptance of new state
accept_rand= log(runif (1))
if (accept_rand<accept_rat) {
jumpT = jumpTnew

jumpS
n=n+1
}

}

jumpSnew

else { #Choose death
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#Generate new state
A=sample(1l:n, 1)
jumpTnew=jumpT [-A]
jumpSnew = jumpS[-Al]

#Create function for changed

lambdanew<-function(t) {

if(n==1) { #give log lambda

lambdanew<-log(lambda0)-k*t

}

else {

lambdanew<-lambdaO*exp (-k*t)+(n>1)*sum((t>jumpTnew) * jumpSnew*exp (-k*
(t>jumpTnew) * (t-jumpTnew) ) )

}

return(lambdanew)

}

intlambdanew<-function(t) {

1/k* (lambdaO* (1-exp (=k*t) ) +(n>1) *sum((t>jumpTnew) * jumpSnew* (1-exp (-k
* (t>jumpTnew) * (t-jumpTnew)))))

}

evallambda<-c()

for(countl in 1:length(data)) {
evallambda[count1]<-log(lambda(countl))

}

evallambdanew<-c ()

for(countl in 1:length(data)) {

if (n==1) {

evallambdanew[count1]<-lambdanew(count1)

}

else {

evallambdanew [count1]<-log(lambdanew(countl))

}

}
likelihood_rat=sum(data*evallambdanew)-intlambdanew(length(data))-
sum(data*evallambda)+intlambda(length(data))
prior_rat = -log(rho)

proposal_rat = log(n/length(data))

accept_rat = likelihood_rat+ prior_rat+proposal_rat

#Acceptance of new state
accept_rand= log(runif (1))

if (accept_rand < accept_rat) {
jumpT = jumpTnew

jumpS = jumpSnew

n=n-1

}
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(.-

#0ptimising with respect to the parameters
1lhoodfn<- function(x){

alphaest = x[1] #rho

betaest = x[2] #rho/k

gammaest = (alphaest+n)/(lambda0 + sum(jumpS))
evallambda<-c()

if (n==0) {

lambda<-function(t) {
log(lambda0) - (alphaest/betaest) *t
}

intlambda<-function(t) {

1/ (alphaest/betaest)*lambdaO* (1-exp(-(alphaest/betaest)*t))
}

jumpSlike = 0
for(countl in 1:length(data)) {
evallambda[count1]<-lambda(countl)
}
}
else {

lambda<-function(t) {
lambdaO*exp(-(alphaest/betaest)*t)+sum((t>jumpT) * jumpS*exp (
-(alphaest/betaest)* (t>jumpT) * (t-jumpT)))

}

intlambda<-function(t) {
1/(alphaest/betaest)* (lambdaO* (1-exp(-(alphaest/betaest)*t))

+sum ( (t>jumpT) * jumpS* (1-exp (- (alphaest/betaest) * (t>jumpT) * (t-jumpT) ) )))
}

jumpSlike = log(dexp(jumpS, gammaest))
for(countl in 1:length(data)) {
evallambda[count1]<-log(lambda(count1))

+

}

llhood = -(log(dgamma(lambdaO,alphaest/(alphaest/betaest), gammaest))

+sum (jumpSlike)+n*log(alphaest)-alphaest*length(data) - intlambda(

length(data)) + sum(data*evallambda))

return(1lhood)

}

llgrad<- function(x) {

rhoest<-x[1]

betaest<-x[2]

k<-rhoest/betaest
gamma<-(betaest+n)/(lambdal0 + sum(jumpS))
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llgrad<-c()

t=length(data)

T=1:length(data)

llgrad[1] <- log(gamma)/k + lambdaO - 1/k*digamma(betaest) + n/rhoest - t
A<-cQ)

B<-c()

for (count in 1:length(data)) {
Alcount]<-sum(jumpS*exp (k*jumpT) * (count>= jumpT))
Blcount]<-sum(jumpS*jumpT*exp (k*jumpT) * (count>= jumpT))

}

llgrad[2] <- -k/beta*(sum(data*(B/(lambdaO+A) - T)) + lambdaO*(1-

exp (-k*t) -k*t*exp(-k*t))/k"2 + lambdaO/k~2*(n - sum(exp(-k*(t-jumpT))-k*
(t-jumpT) *exp (~k* (t-jumpT))))-betaest*(log(gamma)+lambdal) /k +
betaest/k*digamma (betaest))

return(llgrad)

}

shotoptim<-constrOptim(c(alpha, beta), llhoodfn, llgrad, ui=rbind(c(1,0),
c(0,1)), ci=c(0,0))
alpha=shotoptim$par [1]
beta=shotoptim$par [2]

gamma = (rho/k+n)/(lambdal0 + sum(jumpS))
rho=alpha

k = alpha/beta

rhovect<-c(rhovect, rho)

gammavect<-c (gammavect, gamma)

kvect <- c(kvect, k)

nvect <-c(nvect, n)

lvect <- c(lvect, shotoptim$value)

3
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