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ABSTRACT

Over the past years, there have been a wide range of retirement income products proposed in
the academic literature and in industry. These include the traditional life annuity, as well as
more innovative products which incorporate longevity risk sharing. However, the systematic
comparison of these products is difficult due to the presence of differing guarantee and payout
structures.

In this thesis, the differences in longevity and financial guarantee structures in various retirement
income products are first compared through a modelling framework. This framework gives
the payout of the product, taking into account the cost of any relevant guarantees. This is
achieved using a fund equation, which mimics the reserve of the provider. Loadings are added
to the equation to take into account the differences in the cost of providing longevity and
financial guarantees. The payouts are then simulated by using stochastic mortality rates and
financial returns. Second, an evaluation framework is developed to gauge the desirability of the
products from the perspective of the policyholder and provider. A lifetime utility framework
is used to provide a ranking of the desirability of each product. We also evaluate the product
using a risk measure developed by the Australian Government Actuary (2018).

We find that the guarantee structure of the product makes a significant difference to both the
capital required by the provider as well as the product desirability for the policyholder. In
particular, across a wide range of economic and mortality scenarios, group self annuitisation is
found to be the most preferred product due to its equity participation. The life annuity, on the
other hand, is less preferred in most cases due to the high cost of its longevity and financial
guarantee. The findings from this project have significant implications for both policymakers
and retirement income product designers and providers.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Throughout the world, the population is ageing. This is due to increasing life expectancy
and a decline in fertility rates. Globally, the number of people aged over 60 is expected to
increase from 12% in 2015 to 22% by 2050 (World Health Organisation, 2018). This places a
greater burden on governments to provide retirement benefits for the elderly. The problem
of providing a sustainable and adequate retirement income is compounded by the decline in
occupational defined benefit (DB) pensions in many countries, which have historically provided
lifetime incomes with high replacement rates. DB pensions have been increasingly replaced
with defined contribution (DC) systems, which provide for accumulated wealth through one’s
working life. Retirees must then convert this wealth into a sustainable income stream, while
needing to address numerous retirement risks, including financial, longevity and health risks.

Financial risk is the risk that an individual’s accumulated capital falls in value due to
investment fluctuations. This risk can be controlled through the choice of investment strategy
for individuals. For providers, they can implement hedging strategies to reduce their exposure
to financial markets.

Longevity risk is broadly defined as the risk that an individual lives longer than expected, and
hence outliving their financial resources. This risk can be reduced through sharing it with
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other retirees by purchasing a retirement income product from a provider – this is referred
to as risk pooling. The provider then needs to quantify this risk, which can be split into
two sub-types: systematic and idiosyncratic risk. The systematic risk is the risk that the
mortality of the whole pool deviates from the provider’s expectations. This risk arises because
forecasts of future mortality are uncertain, and the provider does not know how mortality
improvements will evolve over time. This risk is not diversifiable – it cannot be reduced by
selling more policies. Idiosyncratic risk is the risk that the mortality of any individual deviates
from expectations. This risk for each policy can be reduced by selling more policies, and is
diversifiable.

Long term care risk is also very significant in retirement. It is the risk that the individual
will not be able to meet aged care costs, which are uncertain in timing and magnitude.
The modelling of health contingencies is complex and highly dependent on the institutional
environment, including government provision of health insurance. In this thesis the focus will
be on financial and longevity risk.

In the economic literature, the solution to managing the financial and longevity risk is a life
annuity, which is found to be an optimal product to purchase in retirement (Yaari, 1965,
Davidoff et al., 2005). This result holds under several key assumptions: that the consumer
maximises their lifetime utility; that the return on annuities is higher than a comparable asset,
such as a bond; and that the individual places no value on the wealth when dead. The life
annuity can give higher returns than a bond because of mortality credits. Retirees who hold an
annuity forfeit their wealth when they die, passing it on to the remaining surviving annuitants.
Hence the surviving annuitants earn a higher return due to the longevity risk pooling.

However, the observed demand for annuities is low throughout most developed nations (Mitchell
and Piggott, 2011). There are several reasons why this could be the case. One of the key
reasons is that annuity providers need to charge a profit and capital loading, in order to meet
the promises to the policyholders. This can make the annuity unattractive in relation to other
investments. The bequest motive also makes annuities less attractive, since an annuity leaves
no capital to the estate of the deceased.

Furthermore, there are numerous behavioural reasons which can affect how the embedded
longevity guarantee in an annuity is perceived (Brown, 2008). For instance, loss aversion is a
heuristic which states that people do not value the longevity guarantee in annuities because
they are afraid of dying too early. The investment frame, which emphasises the annuity’s
lower returns, reduces the demand for an annuity compared to a consumption frame, which
emphasises the constant lifetime income.

In the academic literature globally, there has been a discussion of several retirement income
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products which aim to address the high capital loadings required by annuities. Notably, these
products aim to preserve the longevity sharing mechanism in life annuities, the mortality
credits, which give rise to higher payments for survivors. Group self annuitisation (Piggott
et al., 2005) is an arrangement where the longevity and financial risk is shared among the
pool of participants, rather than being guaranteed by the provider. A longevity-indexed life
annuity (Denuit et al., 2011) is where the systematic longevity risk is held by the annuitants,
and the idiosyncratic risk is held by the provider. The tontine (Milevsky and Salisbury, 2015)
is an arrangement where the provider promises a financial return, but leaves the longevity risk
with the pool of participants. All these products aim to reduce the capital requirement, and
hence the cost of the product, as compared to a life annuity, while still preserving longevity
risk sharing arrangements.

In addition, there are also numerous features which can be added to a given guarantee structure.
Capital guarantees return a portion of the capital to the annuitant if they die early in the
contract, which overcomes the behavioural heuristic of loss aversion. Deferment periods can
be introduced to make a product less expensive by deferring the longevity guarantee. Features
such as these make the comparison more difficult by making the guarantee structure more
complex.

In Australia, the problem of a lack of retirement income product development is similar. The
proportion of the Australian population which is over 65 is growing at a rapid rate. According
to the 2015 Intergenerational Report (Commonwealth of Australia, 2015), it is expected to grow
from 15% in 2015 to 23% in 2055. To respond to this challenge, the Australian Government has
formalised a three-pillar retirement income system to respond to this challenge, which has been
endorsed by the World Bank report Averting the old age crisis (The Treasury, 2001). This
three-pillar system comprises of the first-pillar safety net of the Age Pension, the second-pillar
DC system of superannuation, and the third pillar of voluntary saving.

The second-pillar DC system of superannuation was introduced in 1992, designed to ‘supplement’
the Age Pension by providing for retirement income through legislated mandatory saving of
9.5% of a worker’s income (The Treasury, 2016). This money is invested in a superannuation
fund and earns returns each year. As the system slowly matures, it is becoming a dominant
part of Australia’s retirement income system. Upon retirement, however, there is little guidance
on how to best manage this wealth accumulation.

There is evidence to suggest that retirees in Australia do not manage their longevity and
financial risks well. In 2017, 93% of Australian retirees who choose an income stream convert
their superannuation balance into an account-based pension (ABP) (CEPAR, 2018), which is
an example of a phased withdrawal product. An ABP is designed to give flexibility to consume,
subject to mandated minimum drawdown requirements, which increase with age. However, the
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ABP does not offer any protection against financial, longevity or health risk, being essentially
a form of self-insurance. In response to the lack of formal risk management, 44% of retirees
draw down at the minimum rates, which act as a hedge to probable future adverse outcomes
(Balnozan, 2018, Asher et al., 2017). Life annuities, despite being the optimal products to
manage longevity and financial risk, remain only a small proportion of total annuity sales
(CEPAR, 2018). This can be partially explained by the fact that the Age Pension acts as a
form of life annuity, and so reduces the demand for annuities from the private market (Iskhakov
et al., 2015).

The lack of development of annuities and other retirement income products in Australia indicates
that the ‘retirement income system is underdeveloped’, according to the Commonwealth of
Australia (2015). The Australian Government has sought to address this by introducing
the concept of a Comprehensive Income Product for Retirement (CIPR) (Commonwealth of
Australia, 2015). This is a composite product which incorporates flexibility to access a lump
sum, a higher income than an account based pension, and a broadly constant income for
life. Income flexibility is important in addressing health and other contingency risks, while
longevity risk management will provide a high, but broadly constant income for life. The
product may not fully guarantee longevity risk protection, however, making it cheaper than a
life annuity. The development of composite products such as the CIPR is an important step
to catering for retirees’ diverse needs.

Despite this innovation, there have been limited attempts to standardise the notation, modelling
and comparison of retirement income products and features. The assumptions behind the
comparison of each product, such as the interest rate, mortality rate and time interval of
payments are markedly different and this obscures the commonalities of the underlying design
of the product.

In this thesis, we aim to overcome this by first developing a mathematical modelling framework
based on the concept of a fund equation, which represents the reserve required to be held to
guarantee the payments promised to a policyholder. Pitacco et al. (2009) have developed the
fund equation for a life annuity, and state the mortality credits, financial returns and payout
structure as key elements of the modelling of an annuity. We aim to extend this concept
to other retirement income products, incorporating changes to the financial and longevity
guarantee structure. Part of the modelling framework will be dedicated to comparing the
riskiness of products, and hence the capital charge required, for a wide variety of guarantees.
This will assist insurers as they consider a variety of product designs in the rapidly developing
universe of retirement income products.

Our companion evaluation framework will contribute to the comparison of retirement income
products, which will provide practical insights to retirees. This will be achieved through
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providing a consistent comparison of the distribution of benefit payments, taking into account
the riskiness in providing the guarantees. We also gauge the overall value of each product
through utility measures. We expect such an evaluation framework will aid in the commu-
nication of these results to the government and industry. Indeed, the Retirement Incomes
Working Group of the Actuaries Institute in Australia is also looking to analyse the features of
retirement income products in the Australian context to provide policy input from an actuarial
perspective (Asher and Swinhoe, 2019).

1.2 Research aims

To summarise, our research aims to provide a comprehensive and structured modelling and
comparison of retirement income products. We aim to achieve the following research goals:

• To develop a mathematical framework to represent the guarantee structure in retirement
income products, and;

• To comprehensively evaluate the value of such products from the perspective of both the
insurer and policyholder.

1.3 Outline of thesis

The remainder of the thesis is set out as follows. Chapter 2 considers in detail the literature
surrounding retirement income products, with an emphasis on the products which are examined
in the modelling and evaluation frameworks. We also consider the academic literature on the
comparison of financial and longevity guarantees. Chapter 3 describes the methodology on
the development and implementation of the fund equation for a wide variety of retirement
income products. We also consider each element of the modelling and evaluation framework in
further detail. Chapter 4 reports the key results, focusing on the evaluation of the product
from the insurer’s and policyholder’s perspectives. Sensitivity analysis is also performed on
the key parameters of the model. Chapter 5 concludes the thesis. It describes the implications
for policymakers, industry and academia. We conclude with suggestions for future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter will first review the existing literature around retirement income products. These
products are grouped into three main categories. First, the products with longevity and
financial guarantees which are fixed at inception of the contract will be described. Second, the
products which incorporate the sharing of longevity and/or financial risk between provider and
individual will be described. Finally, products which pool longevity risk are compared. These
products do not have any provider guarantees of longevity risks, as these risks are shared
among participants. The chapter will conclude with a brief discussion on the comparison of
the products’ guarantee and payout structure, with an emphasis on developing a common
framework for their representation.

2.1 Retirement income products

2.1.1 Products with fixed guarantees

2.1.1.1 Life annuity

The life annuity is a product which pays a guaranteed flat periodic payment, as long as the
retiree is alive. This product guarantees all financial and longevity risk. Yaari (1965) showed
that a utility-maximising consumer under the standard lifecycle model, in the presence of
complete markets and actuarially fair annuities, would fully annuitise. Davidoff et al. (2005)
extends this result, finding that under complete markets, full annuitisation is still optimal
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even with non-actuarially fair annuities, so long as the rate of return on annuities is greater
than the return on conventional assets of comparable risk. However, in practise, the loadings
on annuities are high due to adverse selection, which make them less desirable.

2.1.1.2 Deferred life annuity

A variant on a standard life annuity is a deferred life annuity (DLA), which is characterised by
a deferment period. If an individual survives beyond the deferment period, which is agreed
between the provider and the individual upon inception, they receive a constant periodic benefit
for life. The amount of this benefit is also determined when the product is purchased (Pitacco,
2016). Milevsky (2005) has introduced a variation of a DLA called an Advanced Delayed Life
Annuity (ALDA). It incorporates a number of annual premium payments throughout one’s
working life in exchange for known periodic payments from an advanced age, say 80 or 90.
The key guarantee structure is identical in these products: the financial guarantee is set at
inception and lasts throughout the lifetime of the individual; the longevity guarantee applies
from the conclusion of the deferment period until the death of the individual. This product
has the potential to address longevity risk where it is most acute – in later years where the
risk of running out of one’s savings is at its highest.

2.1.1.3 Annuities with capital guarantees

Another variation is the presence of a capital guarantee in annuity products. This feature is
variously referred to as value protection, money-back or cash-back (Pitacco, 2016). In one
such setting in Boardman (2006), the money-back annuity is defined such that the original
capital is returned upon death to the annuitant, minus any payments made so far in the
contract. The concept of loss aversion and mental accounting can explain the presence of these
additional guarantees. An individual may frame the decision to purchase an annuity as a
gamble, with the payoff being random, depending on the annuitant’s estimate of their lifetime
(Brown, 2008). Brown (2008) suggests that under cumulative prospect theory, the losses of
dying young outweigh the gains from living to an old age. The capital guarantee addresses
this behavioural heuristic, as at least the initial capital is always returned to the annuitant.
A variation on this idea has been developed in the Australian context (Comminsure, 2017,
Challenger, 2019), where a known percentage of the initial capital is returned, if the annuitant
dies in earlier years. Another variation is where the reserve of the individual’s fund is paid out
upon death. The presence of a capital guarantee adds a layer of complexity to the guarantee
structure; there is not only a survival benefit, but also a possible benefit paid upon death. It
therefore reduces the longevity risk faced by the provider.

Annuities can also be sold with other types of guarantees. A joint life annuity is a type of
annuity where the payment is guaranteed as long as one out of two people covered under
the policy are still alive. A reversionary life annuity is where the payment continues to a
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nominated beneficiary, most commonly, the spouse, after the annuitant dies. Finally annuities
are commonly sold with inflation protection, called indexed annuities.

2.1.2 Products with partial guarantees

In lieu of providing a full financial and longevity guarantee, providers and academics may design
innovative guarantee structures which share risk between the provider and the individual.

2.1.2.1 Variable annuity

The most notable of such products is the variable annuity. A variable annuity is a type of
investment product where the policyholder invests a lump sum or periodic stream of payments,
and in return the insurer can guarantee a wide variety of survival or death benefits. One
example of such an survival benefit is the guaranteed minimum income benefit. This is where
the provider offers the insured with a choice to purchase a whole life annuity: either at
prevailing rates, or at guaranteed rates, which have been set at inception (Bauer et al., 2008).
In this case the financial risk is shared by the individual and the provider during the deferment
period. Under this guarantee, the longevity risk is borne by the individual during deferment,
and by the provider after deferment. The simplest type of guaranteed minimum death benefit
function ensures capital protection during the deferment period, where the maximum of the
reserve and the initial premium is paid upon death (Bauer et al., 2008). Here, the financial
risk is again shared between the provider and the individual, whereas the longevity risk is
reduced for the provider due to the presence of the offsetting death benefit. Both of these
guarantees provide the annuitant with options which can be exercised when financial markets
deliver lower than expected returns. The cost of offering such guarantees has been quantified
using complex option pricing models (Ignatieva et al., 2016, Alonso-García et al., 2018).

Related to the idea of financial risk-sharing between provider and policyholder is the notion of
risk smoothing. Annuity products could be designed so that surpluses earned in good years
support benefit payouts in bad years (van Bilsen and Linders, 2019). As the thesis will mainly
revolve around the conceptual analysis of longevity risk pooling, rather financial risk-sharing,
we decide not to analyse these further.

2.1.2.2 Longevity-indexed life annuity

A recent innovation in the development of longevity risk-sharing comes in the form of a
longevity-indexed life annuity (Denuit et al., 2011). This product allows the payment at time
t to fluctuate according to a longevity index, which is a forecast of mortality at time t based
on a reference population, tprefx , made and agreed at inception between the annuitant and
the provider. This fluctuation can be quantified through the following benefit equation for a
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payment at time t: bt = b0 ×At, where At is:

At = tp
ref
x

tPx
, (2.1)

where tPx denotes observed survival probabilities from age x to age x+ t.

If the actual longevity exceeds that of the forecasted index, as in the case of unanticipated
mortality improvements, then the payment will be reduced accordingly, and vice versa. In
the case of no deviation of mortality from the forecasted index, naturally, this reduces to the
case of a simple life annuity. Therefore, the guarantee structure can be stated as follows: the
idiosyncratic mortality risk from year to year is the responsibility of the provider, as is the
financial risk. However, the systematic risk is held by the pool of annuitants. This means that
the provider can absolve themselves of the systematic component of their longevity risk. This
is likely to result in lower capital requirements, and thus, a cheaper product.

The complete transfer of systematic longevity risk back to the annuitants can be undesirable,
especially at older ages, where the actual survival of the annuitants is likely to differ significantly
from the forecast. Therefore, floors and caps can be developed which restrict the deviation in
payment between forecasted and actual mortality. In other words, the ratio in equation 2.1
is bounded by set constants (Amin, Amax). Here, the guarantee structure changes slightly, to
allow the systematic risk to be taken by the pool only within the bounds, with the provider
taking the remaining risk, which is outside the bounds.

2.1.2.3 Longevity-contingent deferred life annuity

Alternatively, the deferment period can fluctuate according to systematic improvements in
mortality, as proposed in Denuit et al. (2015). A product under this arrangement is called a
longevity-contingent deferred life annuity (LCDLA). This can be combined with the payment
fluctuation as outlined above in Denuit et al. (2011). Initially, at time 0, age x, a best-estimate
deferment period of m years is set. At the end of the deferment period, at time t+m, the life
expectancy of a x+m year old given by a government agency is compared to some arbitrary
life expectancy agreed at inception, termed the ‘threshold’ life expectancy. If at time m, this
life expectancy is less than the threshold, then there is no deferment. If this life expectancy
exceeds the threshold, the additional deferment period is chosen so that it shares systematic
longevity risk between the provider and individual.

It can be shown that if the threshold life expectancy is set at the forecast of the life expectancy
of a x+m year old, the provider is absolved of any unanticipated improvement in mortality
from time 0 to time m. Under this arrangement, the systematic mortality risk is wholly borne
by the individual from time 0 to time m. The idiosyncratic mortality risk and the remaining
systematic portion after time m is still borne by the provider, along with the financial risk.

9



Denuit et al. (2015) use period life expectancy to illustrate their arguments, as this is the
most common type of life expectancy given by government agencies. Alternatively, cohort life
expectancy could be used instead. As cohort life expectancy takes into account improvements
in mortality throughout the individual’s life, the risk sharing arrangement changes too.

There are certain limits, as with the longevity-indexed life annuity, that the provider can set,
such that the annuitants do not absorb too much of the systematic mortality risk. This can be
easily done by incorporating a cap on the deferment length.

The advantages of the product are similar to that of a longevity-indexed life annuity; there are
also additional innovations. First, for retirees, the use of a life expectancy measure is more
likely to be understood than a longevity index. Second, for providers, the deferred nature of
this product means the guarantees apply over a shorter period, further reducing the capital
requirements and cost.

2.1.3 Products with pooled benefits

Alternatively, no guarantees at all can be explicitly provided by an insurer; instead, the
financial and longevity risk can be shared among participants. In the simplest case, an insurer
can sell a product to a group of individuals who are all of the same age and initial wealth. We
refer to these individuals as the pool. The individuals who decide to participate cannot leave
the pool after it has been set up and forfeit their share of the wealth upon death. This implies
that the provider is able to redistribute their wealth to surviving members. Hence, the benefits
paid to survivors depend on the mortality experience of this pool as a whole, and possibly the
investment strategy of the pool. It is important to note that such products cannot provide
any protection from systematic mortality improvements, as the provider does not hold any
capital to guarantee this risk.

2.1.3.1 Group self annuitisation

Perhaps the most well-known example of product with pooled benefits is the group self
annuitisation (GSA) arrangement (Piggott et al., 2005). The provider pools wealth from
participants and invests it according to their investment strategy. In return, participants
receive a regular income determined by the provider. Participants forfeit their wealth in the
fund upon death, similar to a life annuity where there are no payments after death. The
arrangement is designed, so that in expectation, the payments would function like a life annuity,
but without any guarantee. Therefore the pool shares the idiosyncratic longevity risk among
itself, while also bearing the systematic longevity risk and financial risk. This implies that the
provider need not hold any capital for mortality or investment risk.

The payout structure is as follows: assume that lx annuitants, each with the same wealth and
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age x, decide to enter into a GSA at time t = 0. The payments would be adjusted to take
into account the actual number of lives alive and the investment performance at each time t.
Piggott et al. (2005) show that this adjustment for mortality and investment would be:

bt = bt−1 ×MEAt × IRAt, (2.2)

where the mortality experience adjustment, MEAt = px+t−1
Px+t−1

and the interest rate adjustment,
IRAt = rt

Rt
. Capital letters denote ‘actual’ or ‘realised’ quantities. In the MEA term, px+t−1

(Px+t−1) denotes the assumed (actual) survival probability from time t− 1 to time t. In the
IRA term, rt (Rt) denotes the assumed (actual) financial return. This formulation implies
that the mortality and interest adjustments only apply as experience emerges in the contract.
No attempt is made to determine where there is a secular shift in mortality or interest rates in
future periods.

Piggott et al. (2005) also discuss more complex cases, including the entrance of new cohorts
and expectations adjustment. They show that new cohorts can be incorporated in a fair way
– the pool does not need to be closed after the initial pool is established. They calculate a
modified mortality and interest rate adjustment factor which takes into account the deviations
in mortality, but only for those cohorts which have entered the pool in the previous periods
before the deviation occurred. That is to say, if the deviation in mortality occurred between
time t− 1 and time t, only those people who have entered the pool between time 0 and time
t− 1 would be affected. If the risk of this deviation is shared equally across all such cohorts,
the authors show this will lead to reduced variability in payments – a clear advantage, and
may lead to more entrants in the future.

The concept of expectations adjustment is motivated by the case of a secular shift in mortality
and/or interest rates. This is an example of systematic longevity risk applying to the whole
portfolio. Piggott et al. (2005) model this by using a new annuity factor to calculate future
benefits. This factor applies starting from a given time t, to a single cohort of individuals. The
authors show that a one-time adjustment to the benefit payments must be made at time t to
this cohort to incorporate this information. Assuming no further deviation of mortality from
this new basis, no adjustments need to be made beyond this time and therefore the benefit
payment is flat thereafter. This type of permanent adjustment to the benefit payment stands
in contrast to the gradual incorporation of information in each period as in equation 2.2, since
it is prospective rather than retrospective. Due to this foresight, it minimises the probability
of fund exhaustion at very old ages.

However, the method of incorporating systematic mortality risk is crude, and the effect of
pool size is not considered. Qiao and Sherris (2013) remedy this shortcoming by incorporating
systematic mortality risk in a dynamic fashion to multiple cohorts. They show that without
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taking into account systematic mortality improvements, the benefit payments will be declining
over time. Qiao and Sherris (2013) then attempt to solve this problem by designing a new
pooling scheme, which incorporates the systematic trend of mortality improvements in the
annuity factors dynamically using inputs from a stochastic version of the Gompertz-Makeham
mortality model. The pooling scheme is also extended to multiple cohorts. They allow different
cohorts to share the systematic risk, thereby reducing the volatility of payments. The effect of
pool size on the variability of payments is also considered. The investment risk, however, is
only incorporated in a superficial way. Throughout most of the analysis, a flat yield curve is
used, following Piggott et al. (2005). Only in the latter part of the analysis is the CIR model
used to simulate a stochastic interest rate.

2.1.3.2 Pooled annuity fund

Stamos (2008) modify the work of Piggott et al. (2005), proposing a new type of pooled contract
called a pooled annuity fund (PAF). This fund pools contributions and invests them in a risky
asset, with the longevity risk being shared among the pool, similar to the guarantee structure
of a GSA. Individuals also forfeit their wealth upon death. However, unlike a GSA, members
have freedom in consumption, instead of it being dictated at inception by the provider. For the
purposes of modelling the product, it is assumed that individuals enter into a PAF with the
same wealth and same mortality, and follow the same investment strategy. Members receive
mortality credits, which are the shared gains from other members’ deaths equally distributed
among all survivors. These are credited instantaneously upon the jth individual’s death at a
rate of:

1
Lt− − 1dNt (2.3)

where Nt is a Poisson process describing the evolution of deaths and Lt− is the number of
lives just before the jth individual has died. The mortality credit is stochastic in timing and
magnitude since Lt− is constantly evolving and the time of any single death is uncertain.
Stamos (2008) then optimises for the consumption path which maximises lifetime utility. This
consumption path is increasing through time due to the high mortality credits gained at
older ages. This paper contributes to the literature in two important ways. First, a new
payout structure is developed where the individual is free to consume. Second, the impact of
investment risk on the optimal consumption choice is analysed.

The design of the PAF has been extended by Mercer to accommodate individuals with differing
wealth and mortality, who enter the pool at different times. This product was known as Mercer
LifetimePlus (Mercer, 2017), and is not offered by Mercer at present. Similar to the PAF,
it was designed as an investment-linked account, which provided mortality credits, referred
to as the ‘living bonus’. This ‘living bonus’ was funded by participants who withdrew from
the fund or died, and passed on to the remaining survivors in the fund. Participants would
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consume the investment returns from the fund, and would also receive a return of their capital
if they stayed in the fund for more than twelve years. The consumption freedom and mortality
credits are the key similarities to the PAF. The return of the retiree’s capital and the ability
to leave part of the wealth as a bequest upon death are distinguishing features.

2.1.3.3 Mortality-linked fund

Donnelly et al. (2013) introduce a new product called the mortality-linked fund (MLF), which
bears some similarities to a PAF. Once again, the fund pools contributions to invest them in a
risky asset and individuals forfeit their wealth upon death. However, instead of the mortality
credit being paid stochastically as in Equation 2.3, it is paid according to

µx+t(1− δt)dt

where µx+t is the deterministic force of mortality at age x+ t and δt represents the costs to
the provider. These costs are incurred since the longevity risk is taken up by the provider, and
not the individual. There is no longer any volatility, in the magnitude or the timing of the
mortality credit. Accordingly, the only risk that the individual bears is financial risk which
could deplete the value of their fund. Similar to the assumption in the PAF, individuals enter
into a MLF with the same wealth and same mortality, and follow the same investment strategy.

A similar product design is a unit-linked annuity (Wadsworth et al., 2001, Asher and Swinhoe,
2019). This product, like the MLF, offers unitholders investment in a fund which could
comprise of risky or safe assets, while promising them a deterministic mortality credit. Here,
the assumption of individuals entering such an arrangement with the same wealth and mortality
is loosened. Varying designs are detailed in Wadsworth et al. (2001), with some products
offering smoothed returns (known as with-profit annuities), investment choice in the type of
fund that is chosen, and allowing changes in investment strategy over the lifecycle. In both
the MLF and unit-linked annuity, consumption freedom can be offered, but in practice the
consumption is likely to be set at moderate levels, to prevent withdrawal from the fund before
death and associated adverse selection issues.

2.1.3.4 Annuity overlay fund

Donnelly et al. (2014) introduce the annuity overlay fund, a further modification of the PAF.
This fund pools wealth in an investment fund, with longevity risk sharing between participants.
This is contrast to a MLF, where the longevity risk is guaranteed by the provider. The payout
structure of the annuity overlay fund is designed so that it is actuarially fair at any instant.
That is, for any individual, at any instant, the expected gain of the mortality credit given to
the surviving individual from other individuals who have died, is exactly equal to the expected
loss of the individual’s wealth upon death.
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As a result of this fairness, individuals can join with differing wealth. Individuals are also
free to leave the fund at any time, resulting in further flexibility. In practice, however, limits
would need to be set on consumption each year to prevent adverse selection, as individuals in
deteriorating health have an incentive to exit. The limit on consumption would also need to
apply for this reason to a MLF or PAF.

2.1.3.5 Tontine

A different type of product is the tontine, a historical product recently revived in Milevsky
and Salisbury (2015). Historically, this product was structured to pay out a predetermined
dollar amount, Bt = X, annually to all pool members, in other words, to the pool as a whole.
This structure will be referred to as a flat tontine. This dollar amount was financed from the
investors pooling their money together to purchase a long stream of bond coupons, with the
principal payment funded by the custodian. Thus this meant that there was (little to) no
financial risk, but the longevity risk was shared equally among the participants. In other words,
a flat tontine shares a constant amount X equally among a pool of survivors Lt; with each
survivor receiving their individual benefit bt = X/Lt every year. Notice that Lt is diminishing
as the pool dies. This meant that at very old ages, the benefit X/Lt will increase rapidly,
with last few survivors receiving a windfall. Intuitively, the flat tontine is far from optimal.
Milevsky and Salisbury (2015) propose an adaption to the individual benefit bt, to make it
smoother over the lifetime.

Milevsky and Salisbury (2015) derive the continuous-time payout function for the optimal
tontine, which is calculated so as to maximise the constant relative risk aversion (CRRA)
utility function. The formulation for the payout is complex, but a simpler formulation can be
developed which gives a broadly similar payout. This is called the natural tontine. Milevsky
and Salisbury (2015) show that this payout approximates the optimal tontine at younger ages,
with the payouts diverging significantly at very old ages. It is given by:

Bt = tpxc0

where c0 is given by the flat payout function of the life annuity, 1/
[∫∞

0 e−rttpxdt
]

= 1/ax and
tpx is the survival probability from age x to age x + t. An equal portion of this payout is
distributed to each surviving member of the pool.

2.1.4 Products which address LTC risk

So far, the discussion has concentrated around longevity and financial risk. Long term care
(LTC) risk can be addressed through the development of products with benefits which pay out
upon disablement of the individual. The seminal paper in this field is in Murtaugh et al. (2001),
who design a life annuity with LTC benefits, called a life care annuity. They claim that the
presence of natural hedging will reduce adverse selection in the life annuities, while reducing
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the requirement for medical underwriting in LTC insurance. Through simulation, they find
that the disability costs make up a small proportion of the total payments, and the theoretical
market for such a product is higher than that of a stand-alone annuity or stand-alone LTC
insurance. The modelling behind such products has been extended in Levantesi and Menzietti
(2012), who incorporate stochastic transition rates. This is further developed in Brown and
Warshawsky (2013), who separate the population into eight different risk classes. Upon
pooling healthy and moderately disabled lives, they find that the healthy people in the pool
cross-subsidise the moderately disabled. However, in all cases, the presence of adverse selection
and strict underwriting in the life annuity and LTC insurance, respectively, means that the
policyholders would purchase a life care annuity rather than the two policies separately.

2.1.5 Hybrid products

The development of hybrid, or composite products is an important step in addressing retirees’
holistic needs. A hybrid product, as the name suggests, combines the guarantee structures
of the various products introduced earlier in Subsections 2.1.1 to 2.1.3. As stated in the
Introduction, the Australian Government has recently sought to introduce the CIPR, a type
of hybrid product. In The Treasury (2016, Chart 5), an example of such a CIPR is ‘the
wrap’, a combination of an ABP and a DLA, with the ABP being drawn down faster in
earlier years. In later years, what is remaining of the ABP is drawn down at minimum rates
and the DLA provides the majority of the income. The time of the inception of the DLA is
naturally fixed at the purchase of ‘the wrap’. This product has several advantages compared
to either stand-alone product. In earlier years, flexibility is very important as discretionary
consumption, for instance, spending on holidays, peaks during this time (Daley et al., 2018).
Health risks are also partially addressed by having an ability to take a lump sum in earlier
years. In later years, a DLA is appropriate to provide efficient longevity risk protection.

Hybrid products can also be specifically tailored to health risk at older ages. Weinert and
Gründl (2016) consider the case of a liquidity function to describe the liquidity needs at old
ages which rapidly increases at older ages. The authors then describe the flat tontine (see
Subsection 2.1.3), which has a increasing payout to individuals over time. They find that
purchase of a combination of a flat tontine and an annuity at retirement can help retirees
address their financial, longevity and health risks holistically. However, they also find that
the optimal allocation to a tontine is only 12%. This result assumes actuarial fairness for the
tontine and annuity. Thus, if loadings are applied to the annuity, the optimal allocation to the
tontine could be even higher.

Other innovations based on the tontine and annuity are possible. One such example is a
‘tonuity’, introduced in Chen et al. (2018). This is a product that in earlier years has a natural
tontine payout structure modelled on Milevsky and Salisbury (2015), while in later years gives
a DLA payout structure. For the annuitant, the longevity risk is moderated through the
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tontine in earlier ages, while eliminated in later ages. Similar to the CIPR example, the time of
inception of the DLA is fixed at purchase of the ‘tonuity’. In Bernhardt and Donnelly (2019),
the idea of a tontine with a bequest motive is introduced, where the funds are split between a
tontine account and a bequest account. The proportion of money which is allocated between
the two accounts is decided at inception, and the accounts are re-balanced to maintain this
proportion over time. This can also be thought of as an extension to partial annuitisation
where the retiree decides what proportion of their wealth is annuitised. However, here, the
automatic rebalancing mechanism explicitly aligns the amount of bequest with the strength of
the bequest motive.

2.2 Modelling framework

In this section, we describe the scholarly literature on the comparison of the guarantee and
payout structures of retirement income products. We also consider the issue of loadings when
there is a longevity or financial guarantee embedded in the product.

A key contribution in this space is in Pitacco et al. (2009), who approached this problem from
the perspective of calculating the reserve of a life annuity in discrete time. Through developing
a fund equation, they separate the gains from longevity risk pooling and financial returns for
this product. However, they do not consider how this approach could be extended to other
products, nor a method to quantify the cost of providing the financial and longevity guarantee.

In contrast, Hanewald et al. (2013) compare ten portfolios of retirement income products
comprised of life annuities, GSAs, phased withdrawals and hybrid products. The first two
products are a life annuity and a inflation-indexed life annuity. A stand-alone GSA and phased
withdrawal (ABP) are considered next. The analysis of hybrid products follows – various
combinations of a life annuity, ABP, GSA and DLA are considered, with different drawdown
rates for the ABP. Hanewald et al. (2013) then simulate values of the portfolios and drawdown
patterns of the ABP under the assumption of no financial risk. The simulated prices of the life
annuity and DLA are each loaded by 10% and 25% to account for the financial and longevity
risk faced by the providers. The authors then rank the portfolios under a utility framework.
The 25% loading is taken from Ganegoda and Bateman (2008), an empirical Australian study.
The desirability of the portfolios change when the life annuity is loaded, but there is little
systematic justification for the changes. For example, the ordinary LA is second most preferred
in the case without loadings, while it is seventh preferred in the case of a 25% loading. There
is little change, however, in the ranking of the inflation-indexed life annuity. It is clear that a
comparison between the portfolios would be aided by a more comprehensive examination of
both the nature and cost of the financial and longevity guarantees in each portfolio.

Milevsky and Salisbury (2015) extend the investigation of longevity guarantees in annuities,
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particularly finding the cost of the longevity guarantee which makes an individual indifferent
between a tontine and a loaded annuity. Similar to Hanewald et al. (2013) they focus on the
loading as a percentage of the purchase price of an annuity, finding that this loading, even
for very risk-averse individuals, is less than 10%. This means that the tontine could actually
be preferred to an annuity when the present value of the annuity is 10% higher than a fair
annuity. Similar analysis is performed in Donnelly et al. (2013) to find the cost required to
guarantee the longevity risk in a mortality-linked fund versus an annuity.

Chen et al. (2018) extend this analysis by considering more realistic longevity risk charges
under the European Solvency II regulations. They calculate the risk margin required to be paid
by the policyholder for transferring longevity risk under various cost of capital assumptions.
Since an insurance company is risky, the cost of capital can be quite high. The authors have
assumed a 6% cost of capital for the base case. This means the loading on the premium the
policyholder pays for the annuity is more realistic, as it is calculated according to a regulatory
capital model rather than being an arbitrary parameter such as an indifference loading.

The analyses discussed above, however, do not consider a number of important aspects of
the modelling in a unified manner: the separation of the gains from longevity risk pooling
and financial returns; a systematic way to model and incorporate loadings in products with
complex guarantee and payout structures; and differing payout structures where the products
have the same longevity guarantee structure. In other words, various products, such as group
self annuitisation, pooled annuity funds and tontines have remarkably similar design of the
longevity risk pooling, however the method of paying out surviving members is quite different.
The focus on the benefits given to retirees obscures the underlying commonalities in their
longevity risk sharing.

One of the major contributions of this thesis, then, is to develop a unifying framework to
capture the wide variety of financial and longevity guarantees in retirement income products.
We extend the framework of Pitacco et al. (2009) to consider the reserve required by other
products with varying guarantee structures. We develop a similar framework to Chen et al.
(2018) to quantify the riskiness of products and calculate their required prices in a consistent
manner. Finally, we build upon the evaluation of Hanewald et al. (2013) by incorporating a
wider variety of risk and utility measures.
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CHAPTER 3

METHODOLOGY

This chapter focuses on the techniques used to model and evaluate retirement income products.
First, we introduce some notation which will be used throughout the thesis. Then, we introduce
the various financial and mortality models which are used as inputs to the modelling framework.
We next develop further the fund equation proposed in Pitacco et al. (2009), to incorporate a
wide variety of guarantee structures and product features. This equation states the required
reserve to be held for a policyholder who purchases a retirement income product. The elements
in this equation, namely the mortality credits, financial return and payout structure, make
explicit the longevity and financial guarantees present in retirement income products. Next, we
consider the riskiness of the products, by calculating the required capital and associated price
charged to the policyholder. Finally, we explain our approach to evaluating the retirement
income products. This process can be summarised by Figure 3.1.

3.1 Notation

We assume that the product under consideration is taken out at age x, at time t = 0. We will
assume all individuals who purchase the product have identical wealth and mortality, so that
at time t, the individuals will all be aged x+ t. We will now define some notation which will
be used in the following sections.

We first define the terms in the fund Equation (3.9) in Section 3.3:
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Figure 3.1: Modelling framework

• S: the initial investment used to purchase the product without loadings,
• S∗: the initial investment used to purchase the product, after deducting loadings,
• Ft− : the fund value for an individual at time t, contingent on survival to time t, before

the benefit for that period has been paid out,
• Ft: the fund value for an individual at time t, contingent on survival to time t, after the

benefit for that period has been paid out,
• Θt: the mortality credit earned between time t− 1 and t,
• Rt: the stochastic financial return earned between time t− 1 and t,
• rt: the deterministic financial return earned between time t− 1 and t,
• bt = Ft− × c(t; τ): a formula giving the total benefit payable to an individual alive at

time t, written as a function of the fund value at time t, conditional on information
available up to time t. c(t; τ) can be thought of as the rule, determined at time τ < t,
which states how much of the fund value is paid out at time t.

• It: a formula giving the total benefit payable at time t to an individual who has died
between time t− 1 and t.

We next define some variants of standard actuarial notation:

• lx+t: the best estimate of the number of lives alive in the annuitant population at time t,
made at time 0,

• Lx+t: the actual number of lives alive at time t,
• lrefx+t: an estimate of the number of lives alive in the reference population at time t,

updated at each time t,
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• hpx+t ≡ lx+t+h/lx+t ≡ 1− hqx+t: standard actuarial notation for probability of survival
of a life aged x+ t, between time t and t+ h, using the best estimate of the annuitant
lives,

• vt ≡ 1/(1 + rt): standard actuarial notation for the discount factor,
• äx+t: standard actuarial notation for an annuity due starting at age x+ t,
• µx,t: the force of mortality for a person aged x at time t,
• ω: the maximum lifetime of an individual.

3.2 Model specification

This section outlines the models which are used to account for longevity and financial risk in a
retirement income product.

3.2.1 Mortality modelling

There is a wide range of literature on mortality modelling. When modelling retirement income
products, the performance of the model at ages older than 60 is paramount, since these ages
are relevant for the payouts of the products. Among the earliest was the Gompertz-Makeham
law of mortality (Makeham, 1860), who modelled mortality rates using a deterministic formula
at a single point in time. The force of mortality at age x, µx is given by:

µx = 1
b
e

x−m
b ,

where b > 0 is a dispersion parameter and m is the modal age at death. This model is
very tractable and has been often used to determine closed-form solutions (see Milevsky and
Salisbury, 2015, Chen et al., 2018). Additionally, it performs well at old ages.

Mortality variability at future times can be incorporated into a deterministic model through
Monte Carlo simulation. One example of such an approach can be found in Piggott et al.
(2005):

q∗x = qx

[
x

100[U(0, 1)× 0.3− 0.15] + 1
]

(3.1)

where U(0, 1) is a uniform (0,1) random variable and qx is the input death probability from
a certain population. This formulation has the consequence that the variability in mortality
rates increases at older ages.

Stochastic mortality modelling, on the other hand, allows for mortality rates to be forecast, and
thus, mortality improvements to be quantified. Lee and Carter (1992), in their seminal work,
developed the Lee-Carter model which models the log-mortality rate of a certain population,
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log(µx,t):

log(µx,t) = αx + βxκt + εx,t. (3.2)

The αx term represents the effect of age on the mortality rate, the βx term represents the effect
of improvement in mortality across different ages, and the κt term represents the aggregate
improvement in mortality across time.

A more recent development is the Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006),
which is specifically designed at modelling older ages:

logit(qx,t) = κ
(1)
t + κ

(2)
t (x− x) + εx,t, (3.3)

where logit qx,t = qx,t

1−qx,t
, and x = 1

n

∑n
i=1 xi is the mean age in the sample range (n is the

number of ages fitted to the given population).

Additional stochastic models, including the Age Period Cohort model (presented in Denuit
et al. (2011)) can be found in Cairns et al. (2009), who also offers a comparison of these
models.

The κt term in Equations (3.2) and (3.3) can be forecasted through time series techniques to
model secular improvement in mortality. A common assumption is to use a random walk with
drift (see Denuit et al., 2011, and other scholarly literature). Therefore,

κt = κt−1 + θ + ξt, (3.4)

where θ is the drift parameter, and ξt are error terms which are assumed to be independently
and identically distributed (i.i.d.) normal with zero mean and variance σ2. By considering the
forecast error in κt, the systematic mortality risk can be estimated.

Equations (3.2) and (3.3) can be shown to be special cases of the generalised age-period-cohort
(GAPC) model family (Villegas et al., 2018). These models can then fitted using maximum
likelihood estimation and forecasted.

For tractability, we use the stochastic Lee-Carter model to estimate mortality rates, which we
forecast using a random walk with drift (Equations (3.2) and (3.4)). We will briefly outline
the methodology for this procedure.

Villegas et al. (2018) suggest first modelling the random component as a Poisson distribution
of deaths:

Dx,t ∼ Poisson(Ecx,tµx,t),
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where Dx,t represents the number of deaths in a given population, aged x, between time
t− 1 and t, Ecx,t represents the corresponding central exposed-to-risk, and µx,t represents the
corresponding force of mortality. Then the systematic component is defined as:

ηx,t = αx + βxκt.

We use the log-link, which is the canonical link function:

log
(
E

(
Dx,t

Ecx,t

))
= log(µx,t) = ηx,t.

We also need to apply a set of parameter constraints, for details on this, more information
can be found in Villegas et al. (2018). Since we have identified the Lee-Carter (and other
models) as generalised non-linear models, these can be fit using standard statistical routines
in R. Equation (3.4) can be forecasted and simulated using time series techniques.

A further issue with mortality models is their behaviour at very old ages. In designing a
retirement income product, the sustainability of the payments at very old ages, even up to
the maximum lifespan, must be considered. It is difficult to reliably estimate parameters for
stochastic mortality models, in ages 90 and above, due to a lack of data, particularly in a
small population such as Australia. Therefore, there have been various extrapolation methods
developed to account for this. One such method is logistic extrapolation (Thatcher, 1999),
which extrapolates the force of mortality µx according to:

µx = δαeβx

1 + αeβx
+ γ. (3.5)

If δ = 1 and γ = 0, this is essentially a logistic regression of the force of mortality µx on the
age x, and is extremely tractable. This method is suggested in Pitacco et al. (2009), who also
explore alternative models such as the Weibull and Gompertz.

So far, the stochastic mortality models presented have been in discrete time. Continuous-time
stochastic mortality models have also been used, which include the class of affine mortality
models. One example utilised in Hanewald et al. (2013) is the model developed in Wills and
Sherris (2008). This has the advantage of being easily integrated with various financial return
models, which are often in continuous time.

We now turn to the incorporation of idiosyncratic risk into the stochastic mortality models
described above. We consider the survival of a finite number of individuals using the binomial
assumption of deaths, using an initial pool size Lx as an initial condition. This approach is
widely used (see Milevsky and Salisbury, 2015, and other scholarly literature). The (stochastic)
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number of lives at time t, Lx+t, is given by a binomial distribution:

Bin(Lx+t−1, px+t−1). (3.6)

Finally, mortality rates with systematic and idiosyncratic risk can be generated by using the
output from any mortality model or simulation as an input to Equation (3.6).

The mortality models can be generalised to take into account future entrances into the pool
through a population model. This will be the subject of future work.

3.2.2 Financial modelling

In its simplest form, a financial market can be comprised of a risky asset St, which is invested in
equities, and a risk-free asset Bt, which is invested in cash. The risky asset St within a lifetime
consumption model can be modelled using geometric Brownian motion (GBM) (Merton, 1971):

dSt
St

= µdt+ σdZt, (3.7)

where Zt is a standard Wiener process, µ is the annual expected return of the stock and σ is
the annual volatility of the stock.

However, stocks often exhibit large movements which cannot be explained under a simple,
constant-variance log-normal distribution as posited under geometric Brownian motion. This
has led to the development of several other models which aim to quantify this unexplained
volatility. The jump diffusion model incorporates an additional jump term to Equation (3.7),
where the jump follows an i.i.d. Poisson process (Merton, 1976). The Heston model (Heston,
1993) takes into account stochastic volatility by adding an extra term to the Wiener process
in Equation (3.7):

dSt
St

= µdt+ σ
√
νtdZt. (3.8)

The instantaneous volatility νt, which allows the volatility of the stock to change over time, is
modelled using a Cox-Ingorsoll-Ross (CIR) process. The volatility of the stock and the CIR
process are correlated. Alternatively, more complex models are available, such as an economic
scenario generator, which simulates interest rates, inflation and equity returns, presented in
Hanewald et al. (2013).

The risk-free asset Bt can be modelled using the following differential equation:

dBt
Bt

= rdt,
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where rt = r is the constant risk-free interest rate.

We choose to use the standard GBM model to simulate stock prices because of its tractability.
It is also used as a standard benchmark to simulate financial risk in the retirement income
product literature (see Stamos, 2008, Donnelly et al., 2013, and other scholarly literature).

The GBM model fitting procedure is outlined in Appendix A.

3.3 Modelling framework

3.3.1 The fund equation

Pitacco et al. (2009) present the basic structure of a life annuity from the perspective of a
provider, who needs to hold a reserve to manage the longevity and financial risks inherent in
the contract. The evolution of the reserve is first separated into three terms: the mortality
credits Θt, the financial returns Rt and the payout structure bt. The mortality credits refer
to the gains from risk pooling, as those who die pass their wealth to survivors. Pitacco et al.
(2009) refer to this risk-sharing mechanism as mutuality. The financial returns, which are
passed on to the policyholder, can be deterministic or stochastic. The payout structure is
developed as a function of the reserve. The reserve for an individual increases each period due
to the mortality credits and financial returns, and decreases due to the benefits paid to the
policyholder, as stated in the following fund equation and diagram (Figure 3.2):

Ft = Ft−1(1 + Θt)(1 +Rt)− bt, F0 = S − b0, (3.9)

using the notation defined in Section 3.1.

Pitacco et al. (2009) derive expressions for the mortality credits Θt, the financial returns Rt
and the payout structure bt in the case of a life annuity. As the life annuity pays a constant
amount, the financial return Rt is a constant r. The mortality credit Θt increases according to
the death probability qx,t. Intuitively, this is because more people die at older ages, and so the
redistribution from deceased to survivors is greater at older ages. The amount of mortality
credit is also known in advance as it is calculated based on an assumed mortality basis. The
payout structure bt is written in terms of the fund value just before the benefit is paid, F−t .
For a life annuity, this is the inverse of the annuity factor, which is priced according to the
aforementioned financial and mortality basis, ensuring fairness. The formulation in terms of
F−t is to ensure consistency with products where the drawdown strategy is determined based
on the fund value, or account balance.

We extend this framework to other products. In particular, we consider the case where financial
returns are no longer deterministic, and the mortality credits are no longer fixed, but reflect
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Figure 3.2: Evolution of the fund for a representative policyholder

risk pooling or risk sharing between the participant and the provider. Recall that risk pooling
is the situation where a group of participants enter into an arrangement where their benefit
payment, contingent on survival, depends on the mortality experience of these participants.
The payout structure is independent of the financial returns and mortality credits, and can
be varied by the product designer. For simplicity, for products other than the account-based
pension, we only consider products which give an annuity-like payout. We summarise the
results of our derivations in Table 3.1. The relevant proofs can be found in Appendix B.1.

As an example, consider the case of the group self annuitisation. Here, both financial and
longevity risk are borne by the pool. Hence the financial return is a stochastic Rt, while the
mortality credits depend on the survivorship of the pool, which is encapsulated in the Lx+t

terms. Since the contract is set up to give an annuity-like payout, we note the same inverse of
the annuity factor in the formulation of the payout structure.

To demonstrate the flexibility of the fund equation, we also introduce a new product design
which combines features of both the longevity-indexed life annuity and mortality-linked fund.
In this design, the policyholders receive mortality credits according to a longevity-indexed life
annuity, while the fund is invested in risky assets. This will be called the longevity-indexed
fund (LIF).

In addition, we have derived the representation of various features which could be added to
the retirement income products introduced in Table 3.1. For simplicity, the features, namely,
deferment, non-constant payments and capital guarantees are incorporated with a life annuity
as the underlying product. The results are shown in Appendix B.2.
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Table 3.1: Summary of guarantee structure and resultant elements of fund equation

Product Financial risk Longevity risk
Rt Θx,t btIdiosyncratic Systematic

Life annuity Provider Provider Provider rt
lx+t−1−lx+t

lx+t

Ft−
äx+t

Longevity-indexed
life annuity Provider Provider Individual rt

lref
x+t−1−l

ref
x+t

lref
x+t

Ft−

äref
x+t

Tontine Provider Provider Pool rt
Lx+t−1−Lx+t

Lx+t

Ft−
äx+t

Mortality-linked fund Individual Provider Provider Rt
lx+t−1−lx+t

lx+t

Ft−
äx+t

Longevity-indexed
fund Individual Provider Individual Rt

lref
x+t−1−l

ref
x+t

lref
x+t

Ft−

äref
x+t

Group self
annuitisation Pool Pool Pool Rt

Lx+t−1−Lx+t

Lx+t

Ft−
äx+t

Account-based pension Individual Individual Individual Rt 0 Ft−γt

So far, the fund equation has been presented on an actuarially fair basis, which does not take
into account the cost of providing the various guarantees in the products. Therefore, we will
now explore one method to determine the required loading for each product based on their
riskiness.

3.3.2 Capital calculations

To adequately determine the required loading, it is first necessary to calculate the capital
required. The amount of capital is an indicator of the riskiness of the guarantees from the
provider’s perspective. The price of the product will then reflect the amount of capital loading
that is applied.

First, a procedure is outlined to give a distribution of the possible required capital amounts
under stochastic mortality and financial returns. Then, various risk measures are shown which
indicate the required amount of capital to be held by the insurer.

To calculate a distribution of capital requirements C, the fund equation or reserve introduced
in Section 3.3 needs to be adapted to reflect the actual inflows and outflows of the insurer’s
fund. For simplicity, we assume the product is in run-off – that is, that there are no new
policies sold after the initial time. This is to ensure the amount of capital required over the
lifetime of the product can be modelled adequately at inception.

The insurer’s fund can be stated as:

Lx+tF
I
t = Lx+t−1F

I
t−1(1 +RIt )− bAt − IAt , LxF

I
0 = LxS + LxC0 − bA0 , (3.10)

where F It denotes the value of the insurer’s fund at time t, RIt denotes the value of the insurer’s
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investment earnings from time t− 1 to t, bAt is defined to be the total value of actual survival
benefits paid out to the pool at time t: Lx+tbt, and IAt is defined to be the total value of
actual benefits, which are due to deaths occurring between time t− 1 and t, paid at time t:
(Lx+t−1 − Lx+t)It.

Initially, the insurer invests the initial investment S which is contributed by the policyholder,
plus a certain capital held at time 0, C0. The initial investment S is the same as that in
Equation (3.9). The insurer’s fund value F It accumulates due to the actual financial returns
earned by the insurer RIt and decreases due to the actual survival benefits paid to the pool, bAt
and actual death benefits paid to the pool, IAt .

Since bAt and RIt are stochastic, Equation (3.10) is stochastic. Let C0 be the random initial
capital required such that F Iω−x = 0. Given a large number of simulations, we can calculate an
empirical distribution for C0.

Given this distribution, a mapping from this distribution to a real number must be made
which corresponds to the hypothetical amount of capital held by the company. This is the role
of a risk measure. Arguably the most common risk measure is the Value-at-Risk (VaR). Here,
we define the VaR for the capital, C∗0 , as the smallest amount of capital at time 0, C0 such
that the probability that the terminal value of the fund Fω−x is greater than 0 is α (McNeil
et al., 2015):

C∗0 = VaRα(C0) = inf{C0 ∈ R : Pr(Fω−x ≥ 0) = α}

Typical values for α are 0.95 or 0.99.

Expected shortfall (ES) is another risk measure which we define as the average amount of
initial capital C0 exceeding a certain VaR α, ES = E(C0|C0 ≥ VaRα). It seeks to address
shortcomings in the VaR by considering all possible extreme losses which could impact the
insurer. In particular, it can be shown that using heavy-tailed distributions, the difference
between ES and VaR can be quite substantial (McNeil et al., 2015), as the losses in the tails
are not adequately considered by VaR.

The theoretical VaR and ES can be approximated in the case of empirical distributions through
L-estimators, which are linear estimates of order statistics McNeil et al. (2015).

For our purposes, we determine the initial capital requirement using the Value at Risk at a
confidence level α = 0.99: C∗0 = VaR0.99{C0}.
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3.3.3 Pricing

Given an initial capital requirement C∗0 , we now outline an approach to calculate the price
charged on the initial investment S. We use the risk margin RM as defined under Solvency II
(EIOPA, 2014):

RM = CoC
ω−x∑
t=0

C∗t
(1 + rf )t ,

where CoC denotes the cost of capital, C∗t denotes the capital required at time t, and rf

denotes the risk-free rate. Intuitively, this means that the provider of capital receives an
amount equal to CoC×C∗t at each time t. The present value of this at the risk-free rate is the
risk margin RM.

The capital required, C∗t , at future times t = 1, . . . ω−x, is calculated as a constant proportion
ζ of the expected fund value E[Ft]. This proportion is calculated with reference to the price
charged at time 1:

C∗0 = ζ × E[F1] (3.11)

ζ = C∗0
E[F1] (3.12)

C∗t = ζE[Ft] (3.13)

We first add the policyholder’s initial investment S to the risk margin RM to give the loaded
investment S∗. Then we express the risk margin as a percentage p of the initial investment:

S∗ = S + RM

S∗ = S + pS (3.14)

To allow a fair comparison between products, we set the loaded investment S∗ to be the same
across all investments. The equivalent unloaded investment S can be found by rearranging
Equation (3.14): S = S∗

1+p . This formulation implies that the riskier the product, the more the
benefits will be reduced, for a given purchase price.

3.4 Evaluation framework

We now evaluate the retirement income products using two main dimensions: quantitative
measures of value and risk, and utility analysis. The specification will be informed by a brief
analysis of behavioural features. These measures will be used to communicate outcomes to
academics, industry and policymakers.
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3.4.1 Behavioural features

Studies of people’s preferences, particularly as it relates to consumption in retirement, have
been widely undertaken in the behavioural economics literature. As stated in the introduction,
the decision on purchasing a retirement income product is a complex one, requiring retirees
to solve a “risky, long-horizon, multi-dimensional problem” (Iskhakov et al., 2015). The
complexity inherent in products with longevity guarantees and options only complicates this
decision. Bateman et al. (2018) consider individuals who are presented with the features of
a phased withdrawal account and life annuity. Through experiments, the authors show that
the protection against longevity and financial risk provided by the life annuity is more valued,
when financially literate individuals are able to acquire information about the products at
the time of purchase. This knowledge is termed just-in-time knowledge, and implies that
retirement income products which incorporate financial and longevity protection features
should not be unnecessarily complicated, to allow retirees to appreciate their worth. In terms
of the payout of the products, they should be rising in real terms rather than falling. This is
shown in survey work performed in Beshears et al. (2014), where 50% of the people surveyed
preferred an increasing stream of payments in real terms, as opposed to only 19% who preferred
a decreasing stream. This is in contrast to empirical evidence where retirees’ consumption
habits lessen as they age (Beshears et al., 2014).

Qualitative measures such as surveys are widely used in industry to evaluate retirement income
products, of which the National Seniors survey (National Seniors and Challenger, 2018) is
one prominent example. The most important financial goals in retirement include: regular,
constant income, longevity protection, protection against aged care costs, inflation protection
and capacity to withdraw savings. The authors also consider the importance of the bequest
motive, and found that most retirees did not consider it to be a priority when setting their
goals in retirement. Of those who did consider it important to leave a bequest, only about
10% of those would minimise current consumption in order to achieve a bequest.

However, it is important to note that preferences elicited from experiments, as in the case of
Beshears et al. (2014), may differ from the preferences found in survey work (for example,
National Seniors and Challenger, 2018). This may be a consequence of the experimental design
or framing effects. Thus, qualitative findings should not be interpreted as providing a definitive
answer on the features most desirable for retirees in the selection of products. Nevertheless,
survey work can offer guidance on which features can be quantified in the utility analysis. This
will be elaborated upon in Subsection 4.6.3.

3.4.2 Quantitative measures

Quantitative analysis offers a contrasting approach to the preceding analysis of individuals’
preferences. Rather than empirically examining the demand for products and their features,
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quantitative measures take the product characteristics as given, then aim to quantify the value
and riskiness of such products.

3.4.2.1 Actuarial present value

Firstly, the commonly-used notion of actuarial present value (APV) is central to the analysis
of retirement income products. The APV takes the benefit at each time t, conditional on
survival at time t, and discounts it to time 0. In theory:

APV =
ω−x∑
t=0

tpxv
tbt.

The discount rate embedded in vt is the best estimate of the risk-free rate; the probability of
survival tpx used in the APV calculation is a best estimate of the survival probability and the
benefit bt is given by the product provider. Mitchell et al. (1999) use this basic notion in the
context of life annuities and extend it to make it more realistic. Firstly, they use the term
structure of interest rates on Treasury bonds to calculate expected short rates in future time
periods. They then calculate the spread between BAA-rated corporate bonds and 10 year
Treasury bonds, assuming it is constant for all maturities. The spread is then added to the
expected future short rates to give expected future corporate bond yields, which they use for
the discount factor, in addition to using the risk-free rate. Secondly, the authors use a cohort
life table, which takes into account mortality improvements, to determine the mortality rates.
The data for the life tables are sourced from both a population life table and an annuitant
life table. The latter takes into account adverse selection among annuitants. Thirdly, the
effect of US taxes is taken into account. Therefore, a range actuarial present values are found,
depending on the mortality and interest rate basis used.

The APV of the life annuity is not expected to be the same as the initial capital invested, S.
This is because the interest rates and mortality rates used by the annuity provider to calculate
S and bt could be quite different from best estimate values. The interest rate could be lower
than the risk-free rate and mortality rates could be more conservative, making bt lower than it
would be under a fair basis. This is to ensure that the insurer makes a profit and is able to
deliver a return on capital to its investors.

A comparison between the APV of the product and the initial investment made S can provide
an indication of the value of the product. For example, if the APV is less than S it means
that over the lifetime of the individual, in expectation, the product is delivering less than the
price used to purchase it. This is the idea behind the money’s worth ratio (Mitchell et al.,
1999), which is defined to be APV

S . Under fair pricing, the basis used to determine bt and the
APV are the same; therefore, the money’s worth is 1. If the insurer applies a loading, then the
payout bt is reduced and therefore the APV is similarly lowered, reducing the money’s worth.
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In the context of simulated retirement income products, this definition is adapted slightly. The
discount factor vt is a constant risk-free rate, the survival probability tpx is the simulated sur-
vival probability for a hypothetical infinitely large pool, and the benefit bt is the corresponding
simulated benefit. We then construct the APV in percentage terms, similar to the money’s
worth, using a large number of simulated survival probabilities to construct a distribution. We
refer to this distribution as the APV in percentage terms (APV%):

APV% = APVi
S

,

where APVi is defined as the actuarial present value calculated under each simulated mortality
scenario.

The expected APV is calculated by taking the expectation over all mortality and financial
scenarios, consistent with Hanewald et al. (2013). This formulation gives the present value
of the amount an individual, as part of a large diversified pool, would expect to receive. We
construct the money’s worth using the expected APV, and hence it is distinct from the APV%
defined earlier. The money’s worth is defined as:

Money’s Worth =
1
N

∑N
i=1APVi

S
,

where APVi is defined as above, and N is the number of simulations performed.

3.4.2.2 Australian Government Actuary risk measure

The standard deviation is a well-known risk measure to gauge the volatility of a series of cash
flows. However the standard deviation penalises upside and downside risk equally, and also
does not take anchoring consumption to a certain level into account.

The Australian Government Actuary (2018) risk measure penalises downside risk, considering
only the negative deviance between the benefit at time t, bt and the first benefit, inflation-
adjusted to time t, denoted by b0,t. Thus, it focuses only on downside risk, taking the anchor
point to be the real value of the first payment the retiree receives. This is motivated by the
concept of loss aversion, where losses and gains are perceived in relation to a reference point
(Tversky and Kahneman, 1991) . A measure of downside risk with reference to the initial
payment thus mimics the natural aversion to losses compared to gains.

The risk measure is calculated similar to a coefficient of variation: σ
b0,t

, where σ is given by:

σ =

√√√√ 1
ω − x

ω−x∑
t=0

max(b0,t − bt, 0)2. (3.15)
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Furthermore, if the benefit has reached zero, the corresponding deviation is not counted in
the risk measure. In this context, this means that all pool members have died and the pool is
no longer operating. Although the measure is defined based on payments in real terms, we
assume for simplicity that it applies equally to payments in nominal terms, since we do not
incorporate a model for inflation.

In the simulation context, the AGA risk measure is calculated as an average over all simulations,
similar to the expected APV:

AGA Risk Measure =
1
N

∑N
i=1AGAi

S
,

where APVi is defined as the AGA calculated under each simulated series of benefits bt, and
N is the number of simulations performed.

Furthermore, we do not adopt the Australian Government Actuary’s proposal to truncate this
risk measure at age 100, as in the future, mortality improvements mean that there will be a
small but significant number of people living past this age.

3.4.3 Utility framework

In the academic literature, the most common way to evaluate a series of uncertain future cash
flows is through a utility function coupled with a expected utility framework. This framework
is more sophisticated than a risk measure because it also takes into account time preferences
and survival probability, along with risk aversion. First, the simple case of constant relative
risk aversion (CRRA) is presented. Then, the bequest motive and habit formation will be
considered.

3.4.3.1 CRRA utility

The CRRA utility model has the property that a constant proportion of the wealth is invested
in risky assets as wealth increases. In Hanewald et al. (2013) and the related academic
literature, a utility function which satisfies this property is given by:

U(bt) = b1−ρ
t − 1
1− ρ , (3.16)

where ρ ∈ (0,∞) \ 1 is the relative risk aversion parameter. If ρ > 1, it means the individual is
risk averse, and if 0 < ρ < 1, the individual is risk-seeking. The risk-neutral case is the limit
where ρ→ 1 in Equation (3.16): U(bt) = log bt. An alternative to this, which is less frequently
used, is a utility function which satisfies constant absolute risk aversion (CARA). This has the
property that a constant amount of the wealth is invested in risky assets as wealth increases.
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An example of such a function is the exponential utility (see, for example Bell et al., 2017):

U(bt) = −1
%
e−%bt , (3.17)

where % is a constant, with similar interpretation to ρ in equation (3.16).

These functions give the utility of a single benefit payment bt. These can then be incorporated
into the discounted utility framework (Hanewald et al., 2013) to evaluate outcomes over the
lifetime of the individual:

U0 = E0

[
ω−x∑
t=0

tpxβ
tU(bt)

]
, (3.18)

where β is the time preference parameter and U(·) represents any utility function. The survival
probability tpx can either be the objective survival probability, taken from a life table, or the
subjective survival probability (Weinert and Gründl, 2016), measured using surveys.

Given the discounted utility framework described above, we can extend this to calculate the
certainty equivalent. The certainty equivalent measures the value of a constant consumption
stream whose discounted utility is equal to the discounted utility of the product. In our case,
an individual would be indifferent between purchasing the product and a life annuity of an
annual payment of η. Stated mathematically we find this constant η such that:

E0

[
ω−x∑
t=0

tpxβ
tU(bt)

]
= E0

[
ω−x∑
t=0

tpxβ
tU(η)

]
, (3.19)

where the terms are defined as above.

Bell et al. (2017) propose the extension of the discounted utility framework to the following
form, in order to incorporate a bequest motive:

U0 = E0

[
ω−x∑
t=0

tpxU(bt) + t−1|qxU(It)
(

φ

1− φ

)ρ]
,

where U(·) is given by Equation (3.16), It denotes the amount of bequest and φ is the parameter
for the strength of bequest motive.

3.4.3.2 Habit formation

Consumers often refer to their past consumption in deciding their present consumption levels,
a phenomenon known as habit formation. The discounted utility framework presented thus far
assumes time separable utility, and cannot take this desire into account. The earliest literature
in this area expressed habit formation mathematically using a utility framework by replacing
bt with bt −Xt in Equation (3.16) (Constantinides, 1990), where Xt is the subsistence habit.
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This is referred to as additive habit formation, and is given by the following equation:

U(bt) = (bt −Xt)1−ρ − 1
1− ρ , (3.20)

with the subsistence habit Xt at time t defined as:

Xt = e−AtX0 +B

∫ t−1

0
eA(s−t)bs ds, (3.21)

where A and B are constant parameters. It can be seen here that present consumption at time
t can be written as a weighted average of past consumption and the initial habit X0, with
more recent periods weighted more than more distant periods. The higher the value of A, the
more weight is placed on later periods of consumption in the determination of Xt. The higher
the value of B, the less weight is placed on the initial habit X0.

However, a major problem with the additive habit formation in Equation (3.20) is that under
certain scenarios, this equation can give infinitely negative utility (Carroll, 2000). Practically,
also this formulation is difficult to incorporate into a discrete time framework, especially
when the benefit does not evolve continuously. Fuhrer and Klein (2006) have developed an
alternative specification where habits evolve in a multiplicative fashion:

U(bt) = (bt/Xγ
t )1−ρ − 1

1− ρ , (3.22)

with the reference habit Xt at time t defined as:

Xt = Xt−1 + λ(bt−1 −Xt−1). (3.23)

The reference habit Xt depends on the past reference habit as well as the past benefit. The
parameters in this model can be easily interpreted. The importance of the habit in the utility
function is denoted by γ ∈ [0, 1]. The persistence of previous habits is denoted by λ ∈ [0, 1]. In
particular, the special case of λ = 0 deserves consideration. It can be shown that in this case,
habit formation reduces to a situation of consumption smoothing according to the level of
consumption last period and its change in this period (Fuhrer and Klein, 2006). As λ increases,
more distant periods of past consumption also have an impact on present consumption. The
case of γ = 0 is also instructive, as Equation (3.22) reduces to the simple case of CRRA utility.

Multiplicative habit formation is also presented in Davidoff et al. (2005) who show that the
annuitisation decision depends on the initial habit X0. If the initial habit is too high or too
low, then the deferred consumption induced by the annuity is sub-optimal.

Iskhakov et al. (2015) analyse the case of the fixed consumption floor, or constant habit. This
represents the minimum standard of living required by a retiree to live comfortably. In the
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Australian context, Iskhakov et al. (2015) express this as a benchmark of minimum living
standards, such as the ASFA Modest Retirement Standard (ASFA, 2018, in Iskhakov et al.
(2015)). They find that lower-wealth retirees would increase their allocation to annuities, since
this is the only asset which can guarantee consumption levels. To model the constant habit
using the additive habit formation of Equations (3.20) and (3.21), the constants A and B need
to be set to 0. All habit levels are then set to the initial habit level.

In summary, there is a wide choice of features to incorporate into a utility analysis, as well as
parameters in each function to be estimated. Incorporating habit formation ensures smoothness
of consumption and penalises excessive variability in income from one period to the next, a
desirable feature for retirees (van Bilsen and Linders, 2019, National Seniors and Challenger,
2018). We set the relative risk aversion, time preference parameters and the constants in the
utility framework at an average value found in the literature. The use of habit formation
depends on the setting of an initial habit X0. For simplicity, we assume this is the expected first
benefit of a life annuity, similar to the Australian Government Actuary (2018) risk measure,
where it is set to the expected first benefit of the product. It is important to note that
this initial habit could be different for differing amounts of wealth, as intuitively, wealthier
retirees have a higher standard of living than less wealthy retirees. The bequest motive is not
incorporated since this is a lower priority for most retirees (National Seniors and Challenger,
2018), and it would unnecessarily complicate the analysis.
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CHAPTER 4

RESULTS

This chapter presents the practical contribution of this thesis through simulations, building
on the theoretical development of the fund equation for a wide variety of retirement income
products. These simulations are conducted to elucidate the impact of changing the guarantee
structure on retirees’ incomes by focusing on the benefit payout structure, capital requirements
and resulting prices for illustrative products.

We first define the mortality and financial environment in Subsection 4.1, which will provide
a common basis for the simulations. Then, we illustrate the various financial and mortality
guarantees by comparing the simulated benefits in Subsection 4.1.2. The cost of such guarantees
will be quantified by calculating the capital requirements. We then price the product. Once
these prices are obtained, we evaluate the products using risk-based measures and utility
functions which are informed by the behavioural economics literature. Lastly, we perform
sensitivity analysis in Subsection 4.7.

4.1 Central assumptions

We assume throughout this section that all products are sold to a pool size of Lx = 1000 males
aged 60 each with an assumed initial wealth of S = $100, 000. The assumed mortality basis
of this population is common across all products, and is the same as that of the Australian
population. That is, we do not take into account adverse selection in any of the products that
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we model. This mortality basis will be further described in the next section.

4.1.1 Mortality assumptions

Mortality rates are modelled from ages 50 to 89 according to the Lee-Carter model (Lee and
Carter, 1992) for Australian males, using data from 1967 to 2016. The data is sourced from
the Human Mortality Database (Human Mortality Database, 2019). The fitted rates are then
forecasted through simulating a random walk with drift. Rates for higher ages are extrapolated
for each forecast using the approach of Thatcher (1999), where the logistic regression is fitted
from ages 70 to 89 and used to predict the force of mortality µx from ages 90 to 109. We
forecast the mortality rates for 51 years, in order to provide cohort mortality rates which take
into account mortality improvement from age 60 to 109. These rates are converted into death
probabilities qx = 1− e−µx . We perform 5000 simulations, which proved to be large enough to
obtain stable estimates of the different evaluation metrics.

The expected value of these simulations, being the best estimate of the cohort mortality rates
for the Australian male population, is set as the reference population for the longevity-indexed
life annuity (LLLA) and longevity-indexed fund (LIF). Hence, the mortality credits and
payments, respectively are given in terms of lrefx+t, ä

ref
x+t for the LLLA and LIF.

The idiosyncratic risk is simulated using a binomial distribution (see Equation (3.6)) with the
above simulations as input, with initial pool size Lx = 1000 individuals. This basis, which
takes into account the risk of the finite pool size, is used to calculate the mortality credits for
the GSA and tontine, given in terms of Lx+t.

The expected value of the simulations, after taking into account idiosyncratic risk, is set as
the basis for the mortality credits for the life annuity and MLF, given in terms of lx+t. The
payments for the remaining products apart from the account-based pension (i.e. the life
annuity, tontine, MLF, and GSA), also use this as the basis for the calculation of äx+t.

The details of the models can be found in Section 3.2.1.

4.1.2 Financial assumptions

Financial assumptions are defined according to the methodology outlined in Subsection 3.2.2.
We use Australian All Ordinaries Accumulation Data from 1980 to 2016 to calibrate the
parameters for the Geometric Brownian Motion stock model. We find that the fitted annual
expected return E[Rstock] = µ̂ = 0.1183 and the fitted annual volatility σ̂ = 0.1735. The
details of the fitting procedure can be found in Appendix A.

In the context of our simulation model, we simulate 5000 stock returns, using the parameters
µ = 0.1083, σ = 0.1735. Note that the drift term µ has been reduced by 1%, because we take
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into account the investment costs faced by the provider in investing in equities. The level of
the fee is similar to the fee charged in the Mercer LifetimePlus product, which was between
0.78% to 0.98% (Mercer, 2017). The risk-free asset rf is assumed to be a constant 4% through
time. This implies an equity risk premium (ERP) of 6.83%. This is quite high, and we address
this by performing sensitivity analysis using a lower ERP in Subsection 4.7.61.

We use this estimate to create a two-asset model which is assumed to comprise of a α%
allocation to stocks, and (100− α)% allocation to the risk-free asset:

Rt = α%×Rstock + (100− α)%× rf (4.1)

This model will be used with varying α to describe the financial strategies of the insurer and
individual in the next section.

4.1.3 Financial strategies

We first differentiate between the products by the entity which bears the financial risk. For
products where the insurer bears the financial risk, their investment portfolio is assumed to
follow a strategy where α = 10 in Equation (4.1), with an annual expected return of 4.78 %
and an annual volatility of 1.73 %. We do not assume that the insurer invests their portfolio
wholly in risk-free assets. The insurer cannot have a perfect matching of assets and liabilities,
because of the unavailability of long-dated bonds which match the cash flow of the insurer’s
liabilities. In this work, we do not consider the availability or cost of hedging strategies.

For products where individuals bear the financial risk, we assume they follow a conservative
investment strategy where α = 30 in Equation (4.1). This choice of financial strategy is similar
to the Mercer LifetimePlus product, where the strategic asset allocation was 35% growth and
65% defensive (Mercer, 2017). The annual expected return is 6.35% and annual volatility is
5.2%.

The effect of the choice of investment strategies will be discussed in later sections.

For the account-based pension (ABP), a type of phased withdrawal, the drawdown rates
are those specified in Table 4.1, which are the minimum drawdown rates mandated by the
Australian Government.

4.2 Comparison of payouts

As noted in the Literature Review in Section 2, retirement income products can be grouped
into products where the provider guarantees longevity risk, the provider shares longevity risk

1We find in this subsection that the overall comparison and ranking of the products do not change, but the
insurer’s cost of the financial guarantee is greatly increased
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Table 4.1: Minimum drawdown rates for the account-based pension

Age Annual payment as a % of account balance
55-64 4%
65-74 5%
75-79 6%
80-84 7%
85-89 9%
90-94 11%
95+ 14%

Table 4.2: Risk-sharing in retirement income products

Product Financial risk Longevity risk
Idiosyncratic Systematic

Life annuity Provider Provider Provider
Longevity-indexed
life annuity Provider Provider Individual

Tontine Provider Pool Pool
Mortality-linked fund Individual Provider Provider
Longevity-indexed
fund Individual Provider Individual

Group self annuitisation Pool Pool Pool
Account-based
pension Individual Individual Individual

with the individual, and the pool of policyholders shares longevity risk among themselves.
This last case is where the provider does not provide any guarantee of longevity risk. The
financial risk can be borne either by the provider or individual. The case of the Group Self
Annuitisation (GSA) is such that all risks are pooled. This implies that the financial strategy
must also be common among all individuals in the pool. This is because if individuals could
choose their financial strategy, their share of the pool could grow to an inequitable size relative
to the other participants (Sabin, 2010). The products and their corresponding guarantee
structure is summarised in Table 4.2.

We now consider the effect of the guarantee structure on the benefit payments contingent
on survival, shown in Figure 4.1. A life annuity gives a flat payment of $6173.65 as long
as the policyholder is alive. For the first 20 years, the tontine and LLLA behave like a life
annuity in expectation. This is because the payout rules for these products stipulate a constant,
annuity-like payout in expectation. At very old ages, the payments for the LLLA are more
variable. This reflects the uncertainty in forecasting mortality at older ages, as in this product
the only source of variability is uncertainty in future mortality at older ages in the population
as a whole.

At very old ages, the payments for the GSA and tontine are extremely variable. Indeed, the
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Figure 4.1: 20 simulations of survival benefits for retirement income products

5th and 95th percentile for the benefit payments of the GSA are $6711.93 and $18674.95
respectively. For the tontine, the corresponding payments are $5229.16 and $6881.27. This is
due to two factors: the small number of people remaining in the pool at very old ages; and
the ‘last survivor’ condition (Milevsky and Salisbury, 2015). This condition states that the
last survivor in the pool receives whatever is remaining in the fund. This amount could be
several times the payment in a typical year near the beginning of the contract, especially if
mortality rates have been higher than expected. The payouts for the GSA are more variable
than those of a tontine due to the addition of financial risk from the policyholder’s perspective.
The pool-specific characteristics described here are removed from the product design in the
LLLA, LIF and MLF; in particular, the LLLA (LIF) can be thought of as a smoothed tontine
(GSA) applying to a pool size which approaches infinity.

For a MLF, LIF and GSA, the payments slope upwards in expectation. This is because the
benefits depend on a fixed annuity factor (see Table 3.1), which is priced so as to give a
constant payment, assuming the interest rate is 4%. However, the expected financial returns
which are passed on the policyholder are higher, at 6.35% (see Equation (4.1)). This difference
leads to a lower benefit being paid initially, so that benefits grow over time with an increasing
fund value. This also highlights the value of participating contracts to policyholders – they
can earn a higher payout in expectation, albeit with higher volatility.

Figure 4.2 shows the corresponding simulations for the account-based pension (ABP), a type
of phased withdrawal product. As the policyholder is able to keep their amount invested

40



60 70 80 90 110

0
5

10
15

ABP @ min. d/d rates 

Ages

S
ur

vi
va

l B
en

ef
it 

($
'0

00
)

60 70 80 90 110

0
50

10
0

15
0

ABP @ min. d/d rates 

Ages
D

ea
th

 B
en

ef
it 

($
'0

00
)

Figure 4.2: 20 simulations for the account-based pension

if they die, we differentiate between the benefits contingent on survival (left) and benefits
contingent on death during a particular year (right). The large payment in the death benefit
at the terminal age 110 reflects the return of the fund at the end of the contract, when all
individuals are assumed to have died.

4.3 Comparison of riskiness

The capital distribution C for these products are shown in Figure 4.3, with the horizontal line
in the plot representing the estimated quantile at 50% (the median) and the number at the
right hand side representing the 99th percentile. The 50th (99th) percentile is the amount
of capital required to be held such that the insurer is solvent until the terminal time in 50%
(99%) of cases. We can see that the median of the capital distribution for all products with
financial guarantees (annuity, tontine and LLLA) is below zero. This is because, on average,
the insurer is expected to profit from this contract, as the expected return is higher than the
promised financial return to the policyholder (Equation (4.1) with α = 10). For instance, the
life annuity is expected to make a profit of approximately 7.5% for each dollar contributed by
the policyholder over the lifetime of the contract. The median of the capital distributions for
the products without financial guarantees (MLF, LIF, GSA and ABP) are approximately zero,
as the mortality risk is accounted for in expectation in the pricing formulae of the contracts.
The capital for the GSA is in some cases below zero, since the last survivor condition implies
the contract is terminated early and the provider keeps the remaining money in the fund. A
similar logic applies for the ABP where the policyholder keeps what is remaining in the fund
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Figure 4.3: Comparison of the capital distribution for retirement income products

upon death.

The 99th percentile of C, displayed as a text label in Figure 4.3, offers a more realistic picture
of riskiness in each product. For instance, the capital required to be held for the life annuity
at the 99th percentile over the lifetime of the contract equates to 3.73%. We can see that the
financial guarantee causes a large increase in the required capital, due to the high volatility.
The difference in the mortality guarantees do not translate to a substantial effect on the capital
required for products with financial guarantees. Nevertheless, for such products (namely,
annuity, tontine and LLLA), the greater the mortality guarantees, the greater the amount of
capital required. Hence, we can see that the riskiness of the longevity-indexed life annuity is
between the life annuity and tontine. The riskiness of the stand-alone mortality guarantee can
be seen in the MLF, and this can be compared with the riskiness of guaranteeing only the
idiosyncratic mortality risk in the LIF.

Another important feature of Figure 4.3 is the shape of the distribution. In particular, the
capital distribution for the products with financial guarantees (annuity, tontine and LLLA) is
far wider than the products without such guarantees. This implies that the provider could
receive a large windfall if financial markets perform, as well as, or better than expected. This
is balanced by the fact that a sum of capital still needs to be held in case of extreme market
scenarios. The numerical differences in the capital requirements are presented in Table 4.3,
which shows the capital distribution at various quantiles and compares it with the guarantee
structure of each product.
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Table 4.3: Distribution of capital for each product: S = Systematic mortality risk, I =
idiosyncratic mortality risk, F = financial risk

Product Guarantee 5% 25% Median 75% 95% 97.5% 99%
Life Annuity SIF -0.1422 -0.1005 -0.0710 -0.0415 0.0027 0.0164 0.0373

MLF SI- -0.0262 -0.0103 0.0003 0.0107 0.0262 0.0309 0.0359
LLLA -IF -0.1400 -0.0998 -0.0710 -0.0423 0.0007 0.0146 0.0295
Tontine –F -0.1399 -0.0991 -0.0708 -0.0432 -0.0003 0.0118 0.0271
LIF -I- -0.0142 -0.0057 0.0000 0.0057 0.0131 0.0157 0.0184
ABP — 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GSA — -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.4: Prices of products as proportion of initial investment

Product Price (%)
Life annuity 5.13

LLLA 4.07
Tontine 3.74
MLF 6.27
LIF 3.22
GSA 0
ABP 0

4.4 Comparison of prices

We show the corresponding prices of the products in Table 4.4. We assume there is no provision
for expenses or other costs. The product with the highest price is the MLF, not the life
annuity. This apparent contradiction is explained by considering the formula used to calculate
the capital at each time t (Equation (3.11)). Since the amount of capital at future times
C∗t , t = 1, . . . , ω − x are a constant percentage of the fund value, a greater fund value means
that the value of mortality credits needs to be higher, resulting in a higher price charged to
the policyholder. Intuitively, this can be explained as an interaction between mortality and
financial risk. If the product allows the policyholder to participate in equity returns, ceteris
paribus, the mortality credits are more valuable, since they are being paid on a higher fund
value. Therefore, a higher price should be charged, even though the product is less risky from
the provider’s perspective.

The price for the GSA is set to zero, since we assume the provider keeps any surplus capital.

We now turn to the evaluation of products after taking into account loadings. This enables
us to highlight the value of each product from the policyholder’s perspective, as if they were
going to buy such products. First we present the distribution of benefit payments, then several
risk and utility measures.
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Figure 4.4: Benefits at age 60
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Figure 4.5: Benefits at age 70
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Figure 4.6: Benefits at age 80
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Figure 4.7: Benefits at age 90
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Figure 4.8: Benefits at age 100

4.5 Comparison of benefits

The distribution of benefits for selected ages is presented in Figures 4.4 to 4.8.

At age 60, all products pay out a deterministic value. The ABP pays the lowest amount of
$4,000, which corresponds to a 4% drawdown. The next lowest value is the MLF, which has
the highest price. The GSA pays the highest benefit since the policyholder does not pay a
loading.

At age 70, the distribution is clearly able to be separated into products according to the bearer
of the financial risk. Products with equity participation exhibit a higher volatility of payments,
and higher median payment, compared to those without. The boxplot also shows that the
25th percentile of payments in the MLF is comparable to the life annuity payment, which
demonstrates that adding a reasonable amount of equity participation (30%), ceteris paribus,
can lead to higher outcomes in the majority of cases. Similar arguments can be made by
comparing the LLLA and LIF, and tontine and GSA.

At ages 80 and 90, the overall shape of payments is similar to that at 70, however the distribution
of payments for contracts with equity participation is progressively shifted further to the
right. The distributions of the LLLA and tontine also widen, indicating greater uncertainty in
predicting future mortality improvements.

At age 100, the overall shape of the LLLA and tontine change markedly, with the right tail
becoming quite pronounced. This is because of the high uncertainty in the mortality forecast.
This high uncertainty, which is passed onto retirees, is likely to be undesirable for them,
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Figure 4.9: Distribution of actuarial present value for retirement income products

Table 4.5: Simulated money’s worth

Product Money’s worth Ranking
Life Annuity 0.95 7

Longevity-Indexed Annuity 0.96 6
Tontine 0.96 5

Account-based pension 0.96 4
Mortality-linked fund 1.19 3

Longevity-Indexed fund 1.22 2
Group Self Annuitisation 1.26 1

particularly as payments in earlier years are significantly less volatile. The right tails for the
MLF, LIF and GSA are not shown, as they extend beyond the range of the plot.

4.6 Evaluation metrics

4.6.1 Actuarial present value

Recall in Subsection 3.4.2.1 that the actuarial present value (APV) is calculated with reference
to the actual evolution of mortality of the pool of individuals who purchase the product across
all simulations, with the use of a risk-free discount factor. Recall also that we defined the
APV in percentage terms (APV%) as the APV divided by the initial purchase price, with
the median of the APV% being the money’s worth. The results of the APV% calculation are
shown in Figure 4.9, with the corresponding money’s worth reported in Table 4.5.
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If the payout function of the product coincides with the definition of the APV, the APV will
be a constant. That is to say, if the pool as a whole always receives the total amount they
contribute over their collective lifetimes, as with a tontine, the APV is constant. In our case,
we calculate the APV% to be 0.96, which is less than 1 because of the loading required for the
financial guarantee. The distribution of the APV% for the LLLA is approximately centred on
the tontine’s APV%, albeit with higher variability. It is distributed between 0.93 and 0.99.
This is because the policyholders receive payments according to the mortality evolution of a
reference population, which is assumed to be large and diversified, but the pool itself is always
finite. This small mismatch leads to the small variability in the APV%. The APV% for the
life annuity has a wider distribution and is shifted to the left. It is distributed between 0.84
and 0.97, and has the lowest money’s worth. This reflects two features of the contract. First,
the wider distribution reflects the fact that the payments for the life annuity are set according
to the best estimate of mortality at the beginning of the contract, and do not evolve according
to the mortality experience. If aggregate mortality improves faster than expected, and the
policyholders survive longer in aggregate, they receive a higher money’s worth, and vice versa.
Second, the more expensive financial guarantee reduces the money’s worth since a charge is
taken by the provider, shifting the distribution to the left.

We next consider the distributions for the three products with equity participation, the MLF,
LIF and GSA. In Figure 4.9, the right tail is not shown because it is too large. The GSA has
the highest money’s worth overall. The MLF has the lowest money’s worth of the three
products. The effect of the mortality risk-sharing is analogous to the case of the products
described above – the GSA has the widest distribution, while the MLF has the narrowest of
the three.

For the purposes of this analysis, we model the ABP in the same way as other retirement
income products. That is, we impose the assumption that the payments are contingent on
survival and there is no bequest. This is clearly not how the ABP functions in reality, but
this assumption is important in order for this analysis to be consistent with the results of the
utility framework described in Subsection 4.6.3, as the utility framework we use also does not
take into account any bequest payment. We also calculate the PV of all payments of the ABP,
not conditioning on survival, which results in a far higher money’s worth of 1.36, higher than
the GSA.

4.6.2 AGA risk measure

The Australian Government Actuary (2018) risk measure (Equation (3.15)) is essentially a
truncated semi-deviation with the deviation calculated with reference to the first payment of
each product. This measure is expressed as a percentage of the first benefit, so its interpretation
is similar to that of a coefficient of variation. Table 4.6 shows the ranking of the products.
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Table 4.6: Australian Government Actuary risk measure

Product Initial benefit ($) AGA (%) Rank
Life annuity 5872.46 0.00 1

LLLA 5932.39 5.99 5
Tontine 5950.92 10.31 7
MLF 5809.65 1.08 2
LIF 5981.14 1.34 3
GSA 6173.65 2.61 4
ABP 4000 9.93 6

The life annuity scores highest under this measure, since it never has any payments
which fall below the initial payment. The two products which allow equity participation without
pooling, the MLF, LIF and GSA, rank next. For the MLF and LIF, the equity participation
decreases the chance that payments in the future will be lower than the initial payment, while
the lack of pooling means that the payments are less likely to suddenly decline due to adverse
mortality experience within the pool. For the GSA, despite the equity participation, the
pooling mechanism means that payments at very advanced ages could be penalised under this
measure. A finite pool has a large amount of idiosyncratic and systematic mortality risk at the
most advanced ages (that is, at ages 105 and above), and this can lead to payments in the final
years being greatly reduced compared to the initial benefit. The next product is the LLLA,
as the passing of systematic mortality risk onto the policyholder means payments could fall
below the initial value. The ABP also fares poorly, due to the high chance of fund exhaustion
at old ages, which is due to the lack of a mortality premium. The worst product under the
AGA risk measure is the tontine. The lack of equity participation leads to increased downside
risk, while the pooling mechanism exacerbates the volatility of payments at very old ages.

This analysis highlights two limitations of the Australian Government Actuary risk measure.
First, by considering only downside risk, it is very sensitive to the reference point, that is,
the initial payment of each product. Therefore, contracts with guarantees, such as the life
annuity, are likely to be favoured, even if the cost of meeting that guarantee is high. The
MLF, LIF and GSA are ranked next. This reflects the fact that the MLF has more guarantees
than the LIF and GSA, in spite of the fact that the MLF costs more than the LIF, which
costs more than the GSA. This also leads to the counter-intuitive result that the higher the
equity participation, the lower the risk measure, as the fund is likely to increase over time and
there is less chance it falls below the initial payment. Second, the lack of survival probabilities
means it is not holistic, and is unduly influenced by extreme events occurring at the oldest old
ages. This means it is potentially unsuited to analyse pool-based products such as the GSA or
tontine.
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Table 4.7: Ranking and certainty equivalents of products under CRRA utility and habit
formation

Product CRRA CE CRRA Rank Habit CE Habit Rank
Life annuity 5872.46 6 5872.46 6

LLLA 5921.34 5 5922.07 5
Tontine 5937.24 4 5937.64 4
MLF 7217.89 3 7394.39 3
LIF 7421.99 2 7607.12 2
GSA 7658.77 1 7854.48 1
ABP 5689.26 7 5790.44 7

4.6.3 Utility

In contrast to the previous metrics, a utility function trades off risk and return, taking into
account survival probabilities. Thus, it allows for a more holistic evaluation of the product.
The relevant formulae for the utility functions are given in Subsection 3.4.3.

Table 4.7 presents the evaluation of the products under constant relative risk aversion (CRRA)
and utility with habit formation. We report the ranking of the products and their certainty
equivalent.

First, for CRRA utility, we set ρ = 2 and β = 0.98, and tpx as the mortality of a finite
population of 1000 individuals. The relative risk aversion ρ and time preference parameter
β are both set at a moderate level. Under this scenario, the GSA scores highest. This is
due to the overwhelming gains that result from equity participation, along with the lack of a
capital charge. The ‘last survivor’ effect may also play a role, however this is expected to be
minor due to the low survival probability at extremely advanced ages. The next product is the
LIF, followed by the MLF. These products score lower due to the loadings which are applied
for the mortality risk. The products which rank lower still are the products which guarantee
financial risk; the tontine, LLLA and annuity. Unsurprisingly, these are ranked in order of the
cost of meeting the respective guarantees. The product to be ranked last is the ABP. This is
because the CRRA utility function does not take into account the return of capital in such a
product, and so understates the value of any product which has a bequest.

Recall that in our case, the certainty equivalent is calculated such that the individual would
be indifferent between purchasing such a product and receiving a life annuity, where the level
payment of the life annuity is equal to the certainty equivalent. This is an intuitive way to
gauge the differences in the preferences of the products. Here, the large difference between
products which allow equity participation and those which offer a guaranteed rate can be seen
in monetary terms. This is again because of the high expected return assumptions we have
set in the MLF, LIF and GSA, compared to the risk-free rate. For example, the difference
between a GSA and a tontine is approximately $1402.58 of consumption per year under the
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Table 4.8: Listing of sensitivity testing of various model elements

Model element Parameter Base case Sensitivity
Pool size Lx 1000 100

Policyholder’s percentage of equity investment α in Rt 30% 10%, 50%
Insurer’s percentage of equity investment α in RIt 10% 5%, 20%

Cost of capital CoC 11% 0%, 7%, 15%
Mortality environment qx qx 0.85× qx
Financial environment µ µ ≈ 10.83% µ+ 0.02, µ− 0.02

Utility specification (CRRA) ρ, β 2, 0.98 (5, 0.98), (2, 0.95)
Utility specification (Habit formation) γ, λ 0.5, 0.5 (1, 1)

CRRA utility function.

For habit formation, we set γ = 0.5 and λ = 0.5, indicating that habit formation and
consumption smoothing, respectively, are relatively important. Recall that we assume initial
habit X0 is the expected first benefit of a life annuity, similar to the Australian Government
Actuary (2018) risk measure, where it is set to the expected first benefit of the product. The
ranking of the products do not change and the certainty equivalent also does not change
materially, indicating that that the results are robust to the specification of utility function.

4.7 Sensitivity

We now turn to the robustness of the model as a whole. Table 4.8 outlines the changes which
will be made in the following subsections.

The changing of the mortality environment deserves further explanation. We assume that
the simulated death probabilities qx for the general population, and hence the finite pool of
policyholders, are reduced by 15%. This change is similar to the longevity stress test prescribed
by the Australian Prudential Regulation Authority, where the best estimate mortality rates
are permanently reduced by 20% (APRA, 2012).

We assume that this is an unexpected future improvement in survivorship. We also assume
that in products where the mortality risk is guaranteed, the provider does not adjust the
contractual payments to policyholders. For the longevity-indexed products, we do assume the
reference index changes according to this deviation, and therefore, the mortality credits are
reduced. This implies the benefit paid to each policyholder will decline over time. For the
products with risk pooling, similarly, payments to each policyholder will also decline over time.

In the insurer’s fund, the formulation for the total value of actual survival benefits, bAt = Lx+tbt

will be increased due to greater survivorship. This means that there will be an additional
loading to cover the extra payments to the survivors, where these payments are guaranteed in
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Table 4.9: Distribution of capital for an initial pool size of 100

Product 5% 25% Median 75% 95% 97.5% 99%
MLF -0.0482 -0.0185 0.0011 0.0202 0.0478 0.0563 0.0667
LLLA -0.0430 -0.0171 0.0007 0.0181 0.0426 0.0509 0.0586

Life Annuity -0.1504 -0.1046 -0.0722 -0.0400 0.0090 0.0236 0.0426
Tontine -0.1495 -0.1037 -0.0728 -0.0422 0.0075 0.0216 0.0401
LIF -0.1394 -0.0997 -0.0734 -0.0459 -0.0046 0.0098 0.0269
ABP -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GSA -0.0009 -0.0003 -0.0001 0.0000 0.0000 0.0000 0.0000

Table 4.10: Price as proportion of initial investment for an initial pool size of 100

Product Price (%)
Life annuity 5.87

LLLA 5.52
Tontine 3.71
MLF 11.70
LIF 10.30
GSA 0
ABP 0

the contract.

We also change the financial environment to gauge the impact of a misestimation in the equity
risk premium. The new expected return µ in the GBM is used to resimulate 5000 returns both
for the policyholder’s fund and insurer’s fund.

4.7.1 The effect of pool size

This section will examine the impact of changing the initial pool size on the riskiness of the
product and the perceived value to policyholders. The initial pool size is reduced to 100, and
the resultant capital requirements, prices and ranking of products is computed.

Table 4.9 shows the effect of such a reduction. As the idiosyncratic mortality risk has been
greatly increased, the products which guarantee this risk, namely the MLF, LLLA and life
annuity have higher capital requirements. The MLF has the highest capital requirement since it
guarantees both idiosyncratic and systematic mortality risk. However, as can be seen from the
capital distribution of the LLLA, the majority of the capital is now held for idiosyncratic risk.
Surprisingly, the annuity has a lower capital requirement. This is likely due to diversification
benefits between the financial and longevity risk. The tontine has a moderately low capital
requirement. The requirements for the ABP and GSA remain close to zero, as expected.

This riskiness is reflected in a far higher price for the MLF and LLLA, as shown in Table 4.10.
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Table 4.11: Rankings of products for an initial pool size of 100

Product Money’s worth AGA Utility (CRRA) Utility (CE)
Life annuity 7 1 6 5831.3

LLLA 6 5 5 5839.8
Tontine 5 7 4 5906.2
MLF 3 2 3 6904.5
LIF 2 3 2 6984.0
GSA 1 4 1 7671.5
ABP 4 6 7 5719.0

Table 4.12: Distribution of required capital where the insurer has 5% equity share

Product 5% 25% Median 75% 95% 97.5% 99%
MLF -0.0262 -0.0103 0.0003 0.0107 0.0262 0.0309 0.0359

Life annuity -0.0807 -0.0550 -0.0370 -0.0196 0.0060 0.0147 0.0256
LLLA -0.0142 -0.0057 0.0000 0.0057 0.0131 0.0157 0.0184
Tontine -0.0764 -0.0533 -0.0373 -0.0219 0.0018 0.0092 0.0172
LIF -0.0745 -0.0523 -0.0371 -0.0227 -0.0008 0.0052 0.0130
ABP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GSA -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.11 shows the evaluation of these products, incorporating the loadings. The rankings
for all metrics have not changed compared to the base case.

4.7.2 The effect of insurer’s investment strategy

Next we analyse the effect of changing the insurer’s investment strategy on the riskiness and
value of the products. We focus on comparing products where financial risk is guaranteed,
namely, the life annuity, LLLA and tontine.

First, we present the effect of decreasing the insurer’s investment in risky assets from 10% to
5%. This could reflect a scenario where the return on insurer’s assets almost perfectly matches
the financial returns which are promised to the policyholders, albeit with some frictional costs.

Table 4.12 shows the percentiles of the capital distribution under this scenario. Due to the
improved financial strategy, the life annuity, LLLA and tontine have slightly lower capital
requirements.

Table 4.13 shows the evaluation of these products, incorporating the loadings. The rankings
for all metrics have not changed, though by comparing the CE, the life annuity, LLLA and
tontine become more attractive compared to the base case.

Second, we present the case where the insurer invests in a higher proportion of equity, from
10% to 20%. The percentiles of the capital distribution can be found in Table 4.14. We can
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Table 4.13: Rankings of products where the insurer has 5% equity share

Product Money’s worth AGA Utility (CRRA) Utility (CE)
Life annuity 7 1 6 5963.5

LLLA 6 5 5 6019.7
Tontine 5 7 4 6050.6
MLF 3 2 3 7217.9
LIF 2 3 2 7422.0
GSA 1 4 1 7658.8
ABP 4 6 7 5689.3

Table 4.14: Distribution of required capital where the insurer has 20% equity share

Product 5% 25% Median 75% 95% 97.5% 99%
Life annuity -0.2482 -0.1803 -0.1299 -0.0774 0.0046 0.0316 0.0665
Tontine -0.2480 -0.1795 -0.1299 -0.0791 0.0038 0.0284 0.0606
LLLA -0.2477 -0.1797 -0.1302 -0.0785 0.0040 0.0300 0.0596
MLF -0.0262 -0.0103 0.0003 0.0107 0.0262 0.0309 0.0359
LIF -0.0142 -0.0057 0.0000 0.0057 0.0131 0.0157 0.0184
ABP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GSA -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

see the opposite effect compared to Table 4.12: the life annuity, LLLA and tontine have higher
capital requirements due to the increased riskiness of providing the financial guarantee. This
highlights the fact that the insurer must implement a sound matching strategy so that the
riskiness of providing the guarantee is reduced as much as possible.

Furthermore, at the 99th percentile, the tontine requires more capital than the LLLA. This is
because, in the case of the LLLA, the insurer can exploit the diversification benefit between
financial and mortality risk to reduce the overall capital requirement. The increased capital
requirement for the tontine is also reflected in a change to the preferred product in Table 4.15.
Under the money’s worth and CRRA utility measure, the tontine is now less preferred than
the LLLA.

Table 4.15: Rankings of products where the insurer has 20% equity share

Product Money’s worth AGA Utility (CRRA) Utility (CE)
Life annuity 7 1 7 5655.6

LLLA 5 5 4 5694.1
Tontine 6 7 6 5684.5
MLF 3 2 3 7217.9
LIF 2 3 2 7422.0
GSA 1 4 1 7658.8
ABP 4 6 5 5689.3
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Table 4.16: Rankings of products where the policyholder has 10% equity share

Product Money’s worth AGA Utility (CRRA rank) Utility (CRRA CE)
Life annuity 7 1 6 5872.5

LLLA 6 4 5 5921.3
Tontine 5 6 4 5937.2
MLF 3 2 3 6374.1
LIF 2 3 2 6524.6
GSA 1 5 1 6700.6
ABP 4 7 7 5009.6

4.7.3 The effect of policyholder’s equity participation

In this section, we primarily consider contracts with equity participation (MLF, LIF and
GSA), and consider their riskiness and value to the policyholder, as the proportion of equity
investments held in the policyholder’s fund changes from 30% to 10% and 50%.

Recall that the amount of capital required depends on both the total value of actual benefits
paid to the policyholder and the financial strategy of the insurer (Equation (3.10)). For
products with equity participation, we set the insurer’s financial strategy to coincide with the
policyholder’s election. We also know that as the policyholder’s equity participation increases,
the insurer is liable to pay higher mortality credits as the fund value is higher. However, we
find that the capital requirements are robust to changes in the policyholder’s choice of equity
investment proportion. For the MLF, the differences in the 99th percentile of capital are in
the order of 10 × 10−10. We do see a more substantial change in the price, as the price is
calculated as a multiple of the expected fund value E[Ft] at each time.

The evaluation of the products does not change markedly from the base case, as shown in Tables
4.16 and 4.17. However, we see that when the policyholder elects 50% equity participation,
the ABP is ranked higher than all products with a financial guarantee, despite not taking into
account the bequest. This shows that the financial guarantee is not valuable. The rankings
also highlight the fact that even a small amount of equity participation (in the order of 10%)
can make such a product more desirable compared to a product with a financial guarantee,
due to the potential upside. We also report the certainty equivalents (CE) for the CRRA
utility. By comparing the CE across differing proportions of equity participation, it can be
seen that the products with higher equity participation are more preferred by individuals.

This analysis shows that product designers should be able to freely vary the proportion of
equity participation in participating contracts, as the capital held by the provider remains
unchanged. Any increase in the price due to the higher fund value is able to be passed on to
policyholders, who would nevertheless still elect to purchase a product with higher proportion
in equities.
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Table 4.17: Rankings of products where the policyholder has 50% equity share

Product Money’s worth AGA Utility (CRRA rank) Utility (CRRA CE)
Life annuity 7 1 7 5872.5

LLLA 6 6 6 5921.3
Tontine 5 7 5 5937.2
MLF 3 2 3 7854.6
LIF 2 3 2 8122.5
GSA 1 4 1 8433.8
ABP 4 5 4 6233.0

4.7.4 The effect of the cost of capital

We now turn to the effect of loadings on the desirability of the products by considering the
effect of changing the cost of capital (CoC) from 11% to 0%, 7% and 15%. A higher cost of
capital implies a higher price for the product. We analyse the unloaded case (CoC = 0%)
to highlight the difference of imposing a charge for the riskiness of the guarantees. This is
highlighted in the money’s worth for the life annuity, as it decreases from 1 in the case of no
loading, to 0.93 in the case of a 15% CoC.

Table 4.18 presents the evaluation of products under CRRA utility. Broadly speaking, the
group of participating products rank higher than the group of products where the financial
risk is guaranteed. The cost of the guarantee influences the ranking of the products within
each group. We can see this by comparing the rankings of the life annuity with the LLLA and
tontine; and the rankings of the MLF, LIF and GSA. Intuitively, if the policyholder is not
charged for the risk, it is better to pass the risk on to the provider.

We can also see that at a point between CoC= 0% and CoC= 7%, the cost of the guarantee
becomes too great and the order is reversed. A similar switching of the rankings due to the
excessive cost of the guarantee was also shown in Table 4.15. This highlights the sensitivity of
the policyholder’s preferences to the cost of a guarantee in a retirement income product.

It is noteworthy that the life annuity is never the most preferred product as a whole, even in
the case of no loadings for guarantees, in other words, actuarial fairness. This does not conflict
with the literature on optimality of full annuitisation (see Yaari, 1965, Davidoff et al., 2005,
for example), as we compare a life annuity to products which offer a variable, not fixed, rate
of return.

4.7.5 The effect of misestimation of mortality

Now, we consider changes to the mortality environment, where the death probabilities for
the reference population and the pool of policyholders are permanently reduced by 15% and
thus, individuals who purchase the products survive longer than anticipated. The benefits
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Table 4.18: Ranking of products under CRRA utility with differing cost of capital

Product 0% 7% 15%
Life annuity 4 6 6

LLLA 5 5 5
Tontine 6 4 4
MLF 1 3 3
LIF 2 2 2
GSA 3 1 1
ABP 7 7 7
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Figure 4.10: 20 simulations of survival benefits for retirement income products with unanticip-
ated mortality improvements

promised, before loadings, for the life annuity and MLF are the same as in the base case. For
the LLLA and LIF, the payments are assumed to evolve according to the changed mortality
of the reference population, and hence will decline on average. The benefits for the pooled
products, the tontine and GSA, evolve according to the pool, and hence these benefits will
also decline on average. This is reflected in Figure 4.10.

The riskiness of these products is shown in Table 4.19. We see that products which have a full
mortality guarantee are most risky. The life annuity ranks lower than the MLF at the 99th
percentile because the insurer can exploit the diversification benefit between mortality and
financial risk. This is also the case for the tontine and LLLA. We can also see that the capital
requirements for longevity-indexed products (LLLA, LIF) are greatly reduced compared to the
products with full mortality guarantees (annuity, MLF), as the provider passes the systematic
mortality risk to the individual. Hence this is a reason why the provider would want to sell a
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Table 4.19: Distribution of required capital with unanticipated mortality improvements

Product 5% 25% Median 75% 95% 97.5% 99%
MLF 0.0056 0.0200 0.0302 0.0403 0.0544 0.0593 0.0635

Life annuity -0.1165 -0.0772 -0.0467 -0.0150 0.0298 0.0442 0.0585
LLLA -0.1386 -0.1008 -0.0719 -0.0423 -0.0008 0.0114 0.0283
Tontine -0.1376 -0.1006 -0.0717 -0.0423 -0.0015 0.0108 0.0258
LIF -0.0127 -0.0051 0.0000 0.0049 0.0121 0.0143 0.0164
GSA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ABP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.20: Rankings of products with unanticipated mortality improvements

Product Money’s worth AGA Utility (CRRA) Utility (CE)
Life annuity 7 1 5 5713.8

LLLA 6 7 7 5679.3
Tontine 5 6 6 5693.5
MLF 3 2 3 6972.1
LIF 2 4 2 7278.8
GSA 1 5 1 7476.3
ABP 4 3 4 5740.1

longevity risk-sharing product, as it requires less capital.

Next we consider the impact of this misestimation from the policyholder’s perspective. First,
according to the Australian Government Actuary (2018) risk measure, we can see that the
LLLA ranks last, performing worse than the tontine and life annuity. This shows that retirees
who are loss averse would not prefer this product. The CRRA utility measure shows that the
life annuity ranks higher than the tontine and LLLA. We also note that the positions of the
tontine and LLLA are swapped compared to the money’s worth. This is counter-intuitive, but
may be explained by the fact that the money’s worth and CRRA use different assumptions
regarding the discounting of cash flows. The money’s worth uses the risk-free rate, while the
CRRA utility uses a subjective time preference parameter.

This analysis shows that a product preferred by the provider may not be preferred by the
individual. We find that the individual would rather pay to transfer the systematic mortality
risk back to the provider (as in the case of a life annuity) rather than bear the risk themselves.

4.7.6 The effect of misestimation of financial returns

This section will now examine the impact of differing equity risk premia on the capital and
value of the products.

First the equity risk premium (ERP) is reduced from 6.83% to 4.83%, which is likely a more
realistic figure. The impact on the capital required is shown in Table 4.21. The three products
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Table 4.21: Distribution of required capital for a reduction in the equity risk premium

Product 5% 25% Median 75% 95% 97.5% 99%
Life annuity -0.1221 -0.0798 -0.0497 -0.0196 0.0251 0.0393 0.0604

LLLA -0.1197 -0.0791 -0.0497 -0.0206 0.0232 0.0371 0.0521
Tontine -0.1196 -0.0783 -0.0496 -0.0216 0.0219 0.0340 0.0501
MLF -0.0262 -0.0103 0.0003 0.0107 0.0262 0.0309 0.0359
LIF -0.0142 -0.0057 0.0000 0.0057 0.0131 0.0157 0.0184
ABP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GSA -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.22: Ranking of products under CRRA utility with differing equity risk premium

Product CE (low ERP) Rank (low ERP) CE (high ERP) Rank (high ERP)
Life annuity 5700.0 6 6055.2 7

LLLA 5749.4 5 6104.6 5
Tontine 5761.5 4 6116.7 4
MLF 6750.0 3 7697.1 3
LIF 6925.7 2 7934.2 2
GSA 7130.1 1 8209.2 1
ABP 5315.3 7 6075.9 6

which guarantee financial risk have substantially higher capital charges than the products
which provide no such guarantee. The whole capital distribution of these products has indeed
been shifted to the right by approximately 2%, and hence on average the insurer makes
approximately 2% less profit from selling each contract.

When the equity risk premium is increased from 6.83% to 8.83%, the capital distribution is
analogously shifted to the left. For the life annuity, the capital required at the 99th percentile
is reduced from 3.73% in the base case to 1.42% under this scenario.

In terms of desirability, we focus on evaluating the products using CRRA utility in Table 4.22.
We find that under a low equity risk premium, the evaluation is the same as the base case.
However, under a high equity risk premium, the equity participation becomes so valuable that
the ABP is preferred over the life annuity, even though the CRRA utility does not take into
account the bequest component.

4.7.7 The effect of utility specification

Finally, we perform more robustness checks on the specification of the utility functions.

First, we change the relative risk aversion parameter ρ from 2 to 5. This corresponds to varying
levels of moderate risk aversion, with ρ = 5 representing a higher risk aversion than ρ = 2. The
case of ρ = 2 is used in Hanewald et al. (2013) while the case of ρ = 5 is used in Stamos (2008)
and Donnelly et al. (2013). This does not change the order of the ranking of the products, but
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Table 4.23: Ranking of products under habit formation

Product CE (γ = 0) Rank (γ = 0) CE (γ = 1) Rank (γ = 1)
Life annuity 5872.5 6 5872.5 6

LLLA 5921.3 5 5927.1 5
Tontine 5937.2 4 5944.6 4
MLF 7217.9 3 7037.6 3
LIF 7422.0 2 7245.3 2
GSA 7658.8 1 7483.1 1
ABP 5689.3 7 5409.7 7

does lead to a tie between the MLF and LIF and between the annuity, LLLA and MLF.

The time preference β is changed separately from 0.98 to 0.95, representing an increased level
of impatience, but this makes no difference to the ranking.

We also change the parameters in the habit formation utility function to more “extreme”
levels. Recall that the parameter γ determines the importance of habit formation, with γ = 1
being very important and γ = 0 reducing to the case of CRRA utility. Also recall that λ
determines the level of consumption smoothing, where λ = 0 corresponds to the case where
only the previous period of consumption is considered, and λ = 1 corresponds to the case
where only the initial reference habit is considered. We choose the parameter set γ = 1, λ = 1
to mimic the Australian Government Actuary (2018) risk measure, where here the habit is
very important and the comparison is made to the initial habit X0, the first expected payment
of a life annuity.

It is perhaps most instructive to compare these results to the case of the CRRA utility (here
we define it as the limiting case of habit formation, γ = 0). This is shown in Table 4.23. First,
the specification of habit formation does not change the ranking of products. This has already
been shown (with different parameters) in Subsection 4.6.3. Second, the differences in CE
in the participating products (which have the highest volatility) between the two functions
are minor overall, but not unsubstantial. It is counter-intuitive that the CE under the habit
formation is higher than without habit formation. This could be due to the conservative
choice of initial habit, which we assume to be the first payment of a (loaded) life annuity. For
participating products, there is a high chance of exceeding the initial habit over the course of
the retiree’s lifetime and this may positively skew the habit formation metric.
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CHAPTER 5

CONCLUSION

This chapter will present the key contributions of this thesis for three key groups: policymakers,
the superannuation and life insurance industry, and academia. For policymakers and industry,
we emphasise the results and implications. For academia, we focus on the contribution to the
retirement incomes and modelling literature. We then present a number of suggestions for
future work. This thesis concludes with a summary of the main contributions.

5.1 Implications for policymakers

5.1.1 The importance of risk pooling

The evaluation of the simulated benefits under utility metrics show the importance of incor-
porating risk pooling in a retirement income product. Considering the benefits conditional on
survival, the account-based pension (ABP) ranks last under most economic scenarios, as it
delivers a lower income throughout the retiree’s lifetime.

This work also has implications for the evaluation of products which pool mortality risk, such
as the group self annuitisation (GSA) and tontine. Recall that in such products, the provider
does not guarantee longevity risk in any way. The account balance of these products do not
exhaust until extremely advanced ages, meaning that risk pooling is likely to be a sustainable
option, particularly when the prices for products with mortality guarantees are high.
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Hence, this work affirms the fact that the presence of a product which incorporates risk pooling
should be a component of the Comprehensive Income Product for Retirement (CIPR) (The
Treasury, 2016). Furthermore, the advocacy of a pure pooled product without mortality
guarantees, such as a GSA, or a product with mortality guarantees, such as a life annuity
should depend on market competitiveness.

5.1.2 Australian Government Actuary risk measure

One recent example of a method to evaluate retirement income products can be found in
the Australian Government Actuary (AGA) 2018 risk measure. This risk measure focuses on
the downside risk of a product, relative to the initial benefit. Although it takes into account
common behavioural heuristics such as loss aversion, it has a number of shortcomings.

Firstly, it is biased towards products with guarantees, without taking into the cost of their
provision. This can be seen in the life annuity’s first place ranking, as this is the product
with the most guarantees, despite having the largest capital charge. The mortality-linked
fund (MLF), longevity-indexed fund (LIF) and GSA are ranked 2nd, 3rd and 4th respectively.
This reflects the fact that the MLF has more guarantees than the LIF and GSA, despite
the MLF costing more than the LIF, which in turn costs more than the GSA. The cost of
providing these guarantees is ignored because the deviation is calculated with respect to the
initial payment, which by definition, is the initial payment after loadings have been added
to reduce that payment. In an ideal world, the deviation could be calculated with reference
to the actuarially fair initial benefit of a product. However, in practice, this is unlikely to be
implemented, as the loadings are normally commercial-in-confidence.

Secondly, the AGA risk measure favours products with equity participation. This is because
the higher expected returns of the equity markets lead to a reduced risk of a future payment
falling below the initial payment1. This feature is not unique to the AGA risk measure, as
a utility-based metric will also favour products which return a higher amount to the retiree
on average through investment in the equity market. However, care must be taken when
communicating this to retirees, as investment risk is understated.

Thirdly, it is unsuitable for the evaluation of pool-based products, particularly if they do not
have a provision for the ‘last survivor’. As the risk measure does not take into account survival
probabilities, it is unduly influenced by extremely volatile payments due to uncertainty of
the time of death of the last few survivors. In practice, however, this could be mitigated by
a modified contract design, such as closing the pool once the number of survivors reach a
minimum threshold.

1This has also been stated in Australian Government Actuary (2018)
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5.1.3 The development of a modelling framework

One of the theoretical contributions of this thesis is the development of a consistent mathemat-
ical framework for modelling the guarantee structure in retirement income products (Appendix
B.1). In Appendix B.2, we have also shown how to extend this framework to incorporate
common features such as deferment, increasing payments and capital guarantees.

One of the key advantages of this framework is that it separates the various elements of the
guarantee structure from the payout structure. This allows the development of new and hybrid
products such as CIPRs by varying the elements of the fund equation. These hybrid products
often have complex features such as deferment, and thus, Appendix B.2 is expected to aid in
the evaluation of these products in the future.

To provide one concrete example, an example of a CIPR is the ‘wrap’, a combination of
a deferred life annuity and an account-based pension (ABP). Using the relevant equations
in Appendix B.2, we are able to write the guarantee structure of this product in a concise
mathematical manner and easily compare it to both a life annuity and an ABP. We are then
able to use the evaluation framework to determine the value of these products for the retiree.

5.2 Implications for industry

5.2.1 The product offering

Our results show that, where there is a lack of a guarantee, the financial risk faced by the
policyholder is high throughout their lifetime, while the longevity risk is most acute at ages 80
and above. One solution is for the policyholder to purchase a product with guarantees.

However, we find that the associated cost of meeting the guarantee, which is passed on to the
policyholder, is likely to be high enough in normal circumstances to dissuade retirees from
purchasing a product with guarantees. Our simulations have shown that even with a modest
cost of capital of 7%, the retiree is likely to prefer products with fewer guarantees. Retirees
are likely to prefer to share the longevity risk in a pool (as in the case of the GSA) rather than
pay to pass it fully or partially to a provider. However, when longevity risk is misestimated,
such as when there is an unexpected improvement in longevity, the policyholder is more likely
to pay for the longevity guarantee.

We also find that the ability of the policyholder to participate in equity markets is an
overwhelmingly desirable feature in any retirement product. Our results show that even a
small amount of participation, in the order of 10%, still makes a difference to the policyholder’s
evaluation of such products. The policyholder would still prefer to participate even when the
proportion of equity investment is increased to 50%.
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5.2.2 The design of pooled products

This work also has implications for the design of pooled products. As noted above, the ‘last
survivor’ effect needs to be managed when the pool size reaches a certain minimum threshold.
Furthermore, we find that although a small pool size (of 100) does not change the policyholder’s
preferences of the products, it does have a significant impact on the capital required. The
amount of capital required dramatically increases in a product with longevity guarantees or
risk-sharing, as the idiosyncratic risk of any one policyholder dying is magnified.

5.2.3 The loadings charged to policyholders

For a life insurer, the amount of capital required is crucial to the viability of a product, as the
capital needs to be used efficiently to deliver a return for the company.

Our results show that the amount of capital required is sensitive to several factors:

• The financial and mortality guarantee structure;
• The pool size;
• The insurer’s investment strategy; and
• The misestimation of the financial and mortality risk.

However, it is not sensitive to the policyholder’s investment strategy in participating products.

This implies, firstly, that the provider of retirement income products must carefully consider
the guarantee structure of the product and must devise an investment strategy suitable for
that product in order to achieve a satisfactory capital requirement. For instance, for a life
annuity, tontine and LLLA, a moderate reduction in capital can be achieved by almost perfectly
matching the cash flows of the benefit payments. We simulated this in our work by reducing
the proportion invested in equity by the insurer by 5%. However, for products which do
not guarantee financial risk, no such consideration is necessary. Furthermore, the effect of
misestimation of financial and/or mortality risk should not be underestimated. Naturally, the
effect of this will depend on the guarantee structure of the product. Providers should also
adjust their capital requirements regularly as the contract progresses.

Secondly, providers of participating products are free to offer a wide range of investment
strategies to the policyholders, as in theory they should not need to change the amount
of capital charged. Intuitively, this is because the financial risk is passed through to the
policyholder, so there is no loading required by the provider.
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5.3 Implications for academia

5.3.1 The development of a modelling framework

One of the major contributions of this thesis is the development of a comprehensive modelling
framework which expresses a wide variety of financial and mortality guarantees in a consistent
mathematical representation. This representation, called the fund equation, extends the
analysis in Pitacco et al. (2009) and is presented in full in Appendix B.1 and Appendix B.2.

This framework can be used in future work to evaluate some of the hybrid products recently
proposed in the academic literature, including the tonuity (Chen et al., 2018), a hybrid of
the life annuity and tontine. This can be easily achieved due to the modular nature of the
code developed, where the definition of the retirement income product consists of a series of
functions to define the mortality credits, financial returns and benefit structure. Thus, to
define a tonuity, one is able to easily modify and combine existing functions which have been
written for the life annuity and tontine.

5.3.2 The development of an evaluation framework

The evaluation framework presented in this thesis extends the literature in the comparison of
retirement income products.

Firstly, the evaluation of products extends the analysis of Hanewald et al. (2013) and Milevsky
and Salisbury (2015) to incorporate realistic charges for varying financial and mortality
guarantees. This is a crucial innovation, as it allows the comparison of products on a level
playing field.

Secondly, this work extends the analysis of Piggott et al. (2005), Milevsky and Salisbury (2015)
and Qiao and Sherris (2013) in that it incorporates both financial and mortality risk in a
variety of pooled products and quantifies the relative importance of the two. We find that
financial risk is more important for the provider, especially if they do not develop an adequate
investment strategy.

Thirdly, to our knowledge, this work is one of the first to incorporate habit formation in the
evaluation of retirement income products in a utility framework. Using habit formation allows
us to examine behavioural features such as anchoring to a reference point, while examining
the trade-off between risk and return. Although, we find the rankings of the products are
not sensitive to the presence of habit formation, the differences in certainty equivalent utility
highlight the importance of consumption smoothing and persistence of anchoring to the habit
as important features of any future evaluation of retirement income products.
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5.4 Future research

This research can be extended in a number of ways. First, the modelling could be extended to
incorporate multiple cohorts. This would mean that people can enter the pool in later years.
Piggott et al. (2005) consider this for the GSA, but it could be extended to other products
with longevity risk sharing arrangements. Second, the issue of mortality heterogeneity could
be considered. By assuming people have differing longevity risk, this could potentially impact
the distribution of mortality credits in a retirement income product. A somewhat related issue
is adverse selection in retirement income products. It is well known that an annuity is subject
to adverse selection, where annuitants live longer than the general population. This has the
potential to increase capital requirements for the insurer. Recently, the Actuaries Institute has
published a paper giving sample mortality rates under adverse selection (Actuaries Institute,
2018). We leave the incorporation of this research to future work.

Dynamic strategies are also not considered. The capital is calculated only at one point in
time, the inception. In reality, the capital should be updated yearly as experience emerges
in the contract. This is the approach used in Solvency II (EIOPA, 2014). Hedging strategies
for the financial risk borne by the insurer are not explicitly modelled. Furthermore, dynamic
withdrawals are not considered for the account-based pension. Under the minimum withdrawal
requirements, the withdrawal rate, and hence income, could be too low in early years of
retirement (Balnozan, 2018).

Apart from modelling extensions to the retirement income products explained earlier, there is
also scope to incorporate innovative retirement income product design. One example of this is
in the development of products with long-term-care benefits.

In terms of the evaluation, the analysis could be extended by using more sophisticated
mortality and financial models, improving the accuracy of the simulations. An economic
scenario generator, such as that by Hanewald et al. (2013), can be used to incorporate inflation
risk. More advanced models could be used to estimate the equity risk premium. The utility
function could be extended to include a bequest motive (Bell et al., 2017), allowing it to
be integrated with the economics literature more closely. Although we incorporate one non
time-additive separable utility function through habit formation, we could extend this to
more flexible cases such as Hyperbolic Absolute Risk Aversion or Epstein-Zin preferences
(Backus et al., 2005). Finally, the project could incorporate the effect of the Age Pension
means tests. The presence of the Age Pension has been shown to reduce the demand for life
annuities (Iskhakov et al., 2015), but its effect is yet to be considered for other retirement
income products. Incorporation of the Age Pension has the potential to make the work more
applicable to the Australian context.

Finally, the demand side for such products could be explored further. When retirees purchase
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a retirement income product, they are essentially exchanging financial and longevity risk for
default risk of the provider. This default risk, which is borne by the individual, has not been
considered. Furthermore the role of subjective survival probabilities influencing the demand
for retirement income products can also be incorporated in future work (see Chen et al., 2019,
Weinert and Gründl, 2016).

5.5 Summary

In summary, the contribution of my thesis is both theoretical and practical.

1. I develop a modelling framework which achieves the following objectives:
(a) comprehensively compares the guarantee structure of various retirement income

products;
(b) separates the guarantee structure from the payout structure, offering greater trans-

parency in the communication of the product design;
(c) simulates the fund equation and benefit payouts using appropriate stochastic

mortality and financial models; and
(d) applies appropriate loadings to products to reflect the cost of providing financial

and longevity guarantees.
2. I develop an evaluation framework which extends previous evaluations of retirement

income products. It:
(a) quantifies the cost of providing financial and longevity guarantees;
(b) use measures of risk and value to communicate desirability of products to industry

and policymakers; and
(c) extends the use of existing utility frameworks by incorporating habit formation into

the evaluation decision.
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APPENDIX A

FITTING OF GBM

First take a given series of monthly stock values S1 . . . Sn. The log-return xi = ln Si
Si−1

each
period follows a normal distribution:

xi ∼ φ((µ− 1
2σ

2)T, σT ),

where µ and σ are the annual mean and volatility of the stock price, φ denotes the probability
density function of the normal distribution, and T = 1

12 , since the stock returns are monthly.

Then we can solve the following equations simultaneously:

E[xi] = (µ− 1
2σ

2)T

Var[xi] = σ2T,

This yields the following estimates for µ and σ:

µ̂ = Ê[xi]
T

+ 1
2 σ̂

2

σ̂ =

√
V̂ar[xi]
T

,
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where Ê[xi] represents the sample mean of the monthly stock log-return and V̂ar[xi] represents
the sample variance of the monthly stock log-return. This proof is adapted from Hull (2012).
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APPENDIX B

DERIVATION OF THE FUND
EQUATION FOR RETIREMENT

INCOME PRODUCTS

B.1 Products used in this thesis

In this section, we derive the mortality credits Θt, the financial returns Rt and the payout
structure bt for all retirement income products that we consider in this work. It should also be
noted that there are no loadings incorporated in these equations The notation used has been
defined in Section 3.1.

B.1.1 Life annuity

We consider the fund equation for the whole portfolio of annuitants, presenting the work of
Pitacco et al. (2009). At any time t, the total fund value is lx+tFt, where lx+t is the best
estimate of the number of individuals alive at time t. Note that in a life annuity, the Rt in
Equation (3.9) is a constant r, since the annuitant receives a guaranteed financial return.
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Therefore, using the notation in Section 3.1:

lx+tFt = lx+t−1Ft−1(1 + r)− lx+tbt, lxF0 = lx(S − b0), (B.1)

Ft = lx+t−1
lx+t

Ft−1(1 + r)− bt F0 = S − b0, (B.2)

Now let lx+t−1
lx+t

= 1 + Θt.

Θt = lx+t−1
lx+t

− 1 = 1
px+t−1

− 1. (B.3)

Θt is always greater than 0, so the mortality credit is always positive.

To find bt we must use the prospective reserve :

lx+tFt− = lx+t(bt + vpx+tbt + · · ·+ vω−x−tω−x−tpx+tbt),

lx+tFt− = lx+t

ω−x−t∑
h=0

vh · bt · hpx+t,

Ft− = bt · äx+t,

bt = Ft−

äx+t
,

bt = Ft− ×
1

äx+t
= Ft− × c(t; 0) = b. (B.4)

The first equation holds because the annuity is designed to give constant annual payments,
so each benefit at time t + 1, t + 2, . . . , ω − x, is the same as the benefit at time t, bt.
Furthermore, the probability of survival px+t and interest rate r are determined at inception of
the contract, so the rule c(t; 0) = 1/äx+t is similarly determined at inception. It can be shown
that the benefit is constant for all t: bt = b. It should be noted that if the best estimates
of lives lx+t and the risk-free rate rt = r is used, then the fund equation does not take into
account any loadings.

In what follows, we adapt the derivations in Pitacco et al. (2009) to incorporate a wide variety
of longevity and financial guarantees. It should also be noted that, similar to the assumption
in Section 3.3, the equations presented in this section represent actuarially fair products; no
loadings are incorporated into the analysis. The notation used here has been defined in Section
3.1.
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B.1.2 Group self annuitisation

Following Piggott et al. (2005), the value of the fund for all participants for the case of the
GSA can be expressed as:

Lx+tFt = Lx+t−1Ft−1(1 +Rt)− Lx+tbt, LxF0 = Lx(S − b0)

Ft = Lx+t−1
Lx+t

Ft−1(1 +Rt)− bt F0 = S − b0 (B.5)

From the last line, it can be easily shown that Θt = Lx+t−1−Lx+t

Lx+t
.

These expressions hold because of the principle of mutuality: only the survivors share in the
gains of the fund, whereas the deceased lose their share of the fund. It is analogous to the
case of the life annuity, as shown in the previous section, with the deterministic lx replaced
with a stochastic Lx.

The payout structure at time t can be computed by considering the total fund value Lx+tFt−

spread equally across each remaining survivor across their expected lifetime, which is determined
at the beginning of the contract. This will allow us to calculate the fund value using a
prospective reserving argument, similar to that for the life annuity. Piggott et al. (2005) show
that this approach is mathematically equivalent to adjusting the benefit each period to account
for deviations in experience, as in Equation (2.2). The proof is as follows:

Lx+tFt− = Lx+t(bt + vpx+tbt + · · ·+ vω−x−tω−x−tpx+tbt)

Lx+tFt− = Lx+t

ω−x−t∑
h=0

vh · bt · hpx+t

Ft− = bt · äx+t

bt = Ft− ×
1

äx+t
= Ft− × c(t; 0).

The benefits here are not constant across time as it depends on the fund value Ft− , which in
turn depends on the actual number of survivors at any point t: Lx+t as well as the financial
return earned between time t− 1 and t: Rt−1. Furthermore, since the probability of survival
px+t at each time t is determined at inception, the rule c(t; 0) = 1/äx+t is similarly determined
at inception.
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B.1.3 Tontine

In a tontine, the financial returns are guaranteed by the provider instead of being shared
among the pool, hence Rt is replaced by rt in Equation (B.5):

Ft = Lx+t−1
Lx+t

Ft−1(1 + r)− bt F0 = S − b0

In Milevsky and Salisbury (2015) the payout for a natural tontine (in our notation) is defined
as:

bt = (Slx)(tpx)
Lx+täx

(B.6)

This offers a different perspective on the design of a product with longevity risk pooling. A set
of rules is set up initially – the quantities lx, S, and äx are determined at inception and cannot
be changed. Then the benefit evolves according to one term only: the (stochastic) number
of survivors at time t, Lx+t. The disadvantage of this approach is that the fund value is no
longer present in Equation (B.6) – risk management from the perspective of the provider is
made more difficult. Fortunately, it can be shown that the formulation in Equation (B.6) is
identical to the formulation of the GSA’s fund equation and payout structure, in the case of a
deterministic financial return. It can also be shown that the tontine payout can be expressed
in terms of the recursive benefit formulation in Piggott et al. (2005). The proofs for these two
results can be found below.

Theorem B.1.1 The payout function bt = Slx(tpx)
Lx+täx

is equivalent to bt = Ft− × c(t; 0) where
Ft− = Lx+t−1

Lx+t
(1 + r)Ft−1 and c(t; 0) = 1

äx+t
.

Proof. Recall the fund equation for a GSA at time t = 1. We set a deterministic financial
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return r for consistency with the tontine:

F1 = lx
Lx+1

F0(1 + r)− b1 F0 = S − b0

b0 = S

äx

b1 = F1−

äx+1

= lx
Lx+1

F0(1 + r) 1
äx+1

= lx
Lx+1

(
S − S

äx

)
(1 + r) 1

äx+1

= Slx
Lx+1

(1 + r)
(
äx − 1
äx

)
lx+1

(1 + r)(äx − 1)lx

= Slx+1
Lx+1

1
äx

= (Slx)(px)
Lx+1äx

In the third last line we use the well-known actuarial identity 1 + vpxäx+1 = äx, solving for
äx+1. We have hence proven the Equation (B.6) for the case of t = 1. By induction it holds
also for a general t.

Theorem B.1.2 The payout function bt = Slx(tpx)
Lx+täx

is equivalent to bt = bt−1 ×MEAt where
MEAt = px+t−1

Px+t−1
= lx+t

lx+t−1
× Lx+t−1

Lx+t
.

Proof.

bt = Slx(tpx)
Lx+täx

(B.7)

bt−1 = Slx
äx

(t−1px)
( 1
Lx+t−1

)
(B.8)

Solve for Slx
äx

in Equation (B.8):

Slx
äx

= bt−1

t−1px
Lx+t−1 −→ (B.7)

bt = bt−1(tpx)
t−1px

Lx+t−1
Lx+t

= bt−1
lx+t
lx

lx
lx+t−1

Lx+t−1
Lx+t

= bt−1
px+t−1
Px+t−1
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Now for the converse:

bt = bt−1 ×
lx+t
lx+t−1

Lx+t−1
Lx+t

= bt−2 ×MEAt−1 ×MEAt

= bt−2 ×
lx+t
Lx+t

Lx+t−2
lx+t−2

= . . .

= b1 ×
lx+t
Lx+t

Lx+1
lx+1

= b0 ×
lx+t
Lx+t

lx
lx

= Slx(tpx)
äxLx+t

B.1.4 Longevity-indexed life annuity

In a longevity-indexed life annuity (LLLA) (Denuit et al., 2011), the longevity risk is shared
between the provider and individual, where the payments depend on the setting of a reference
population lrefx+t at inception of the contract. As a result, if the actual mortality rate deviates
from the reference population, this is borne by the policyholders. The fund equation is given
by:

lrefx+tFt = lrefx+t−1Ft−1(1 + r)− lrefx+tbt, lrefx F0 = lrefx (S − b0)

Ft =
lrefx+t−1

lrefx+t
Ft−1(1 + r)− bt F0 = S − b0

Θt =
lrefx+t−1 − l

ref
x+t

lrefx+t

bt = Ft− ×
1

ärefx+t
= Ft− × c(t; 0).

B.1.5 Mortality-linked fund

Next, we consider a product where the mortality credits paid to the policyholder are determ-
inistic, as in the case of a life annuity, but the fund is invested in risky assets. This design
is similar to the mortality-linked fund defined in Section 2 (Donnelly et al., 2013). For the
purposes of this analysis, this product will simply be called the mortality-linked fund (MLF),
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and the equations defining this product are shown below:

lx+tFt = lx+t−1Ft−1(1 +Rt)− lx+tbt, lxF0 = lx(S − b0)

Ft = lx+t−1
lx+t

Ft−1(1 +Rt)− bt F0 = S − b0

Θt = lx+t−1 − lx+t
lx+t

bt = Ft− ×
1

äx+t
= Ft− × c(t; 0).

B.1.6 Longevity-indexed fund

Recall that we have introduced a new product design which combines features of both the
longevity-indexed life annuity and mortality-linked fund. In this design, the policyholders
receive mortality credits according to a longevity-indexed life annuity, while the fund is invested
in risky assets. This will be called the longevity-indexed fund (LIF), whose fund equation is
given by:

lrefx+tFt = lrefx+t−1Ft−1(1 +Rt)− lrefx+tbt, lxF0 = lx(S − b0)

Ft =
lrefx+t−1

lrefx+t
Ft−1(1 +Rt)− bt F0 = S − b0

Θt =
lrefx+t−1 − l

ref
x+t

lrefx+t

bt = Ft− ×
1

ärefx+t
= Ft− × c(t; 0).

B.1.7 Phased withdrawal

Consider a phased withdrawal product structured such that a percentage of the fund value γt
is withdrawn at the end of each year, so that bt = Ft− × c(t; 0) = Ft−γt.

As there is no longevity risk sharing, the fund equation can be written from the perspective of
one individual, simplifying it considerably:

Ft = Ft−1(1 +Rt)− γtFt− F0 = S − b0

Ft = Ft−1(1 +Rt)(1− γt).

B.2 Additional product features

This section considers the derivation of various features which could be added to the retirement
income products presented in the previous section. For simplicity, the features, namely,
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deferment, non-constant payments and capital guarantees are incorporated with a life annuity
as the underlying product. It should also be noted that there are no loadings incorporated in
these equations.

B.2.1 Deferment

Let the deferment period of the deferred life annuity be m years. That is, conditional on
survival, there is no payment from 0 < t < m, with the first payment from time m continuing
annually to ω − x.

Therefore the fund equation can be stated as:

lx+tFt = lx+t−1Ft−1(1 + r) lxF0 = lx(S), 0 < t < m

Ft = lx+t−1
lx+t

Ft−1(1 + r) F0 = S, 0 < t < m

Ft = lx+t−1
lx+t

Ft−1(1 + r)− bt m ≤ t < ω.

It can be thus be easily seen that Θt is the same as Equation (B.3) for all time t: Θt =
lx+t−1−lx+t

lx+t
.

To calculate bt, firstly note that there is no payment during the deferment period 0 < t < m,
hence, there is no benefit. After the deferment period m, the payout structure is also the same
as an ordinary life annuity since the prospective reserve is the same. Hence,

bt =

0, 0 ≤ t < m,

Ft−
äx+t

, m ≤ t < ω.

B.2.2 Non-constant payments

Consider the case where the life annuity is modified to give payments which vary across time
according to an index i (for example, the Consumer Price Index). Therefore the benefit would
be defined recursively: bt = bt−1(1 + it−1). We have the usual fund equation:

lx+tFt = lx+t−1Ft−1(1 + r)− lx+tbt, lxF0 = lx(S − b0)

Ft = lx+t−1
lx+t

Ft−1(1 + r)− bt. F0 = S − b0

77



To find bt we use the prospective reserve:

lx+tFt− = lx+t

bt + vbt(1 + it)px+t + · · ·+ vω−x−tbt

ω−x−1∏
j=t

(1 + ij)ω−x−tpx+t


lx+tFt− = lx+t

bt +
ω−x−t∑
h=1

vh bt h+t−1∏
j=t

(1 + ij) hpx+t


Ft− = bt + bt

ω−x−t∑
h=1

vh h+t−1∏
j=t

(1 + ij) hpx+t


bt = Ft−

1 +
∑ω−x−t
h=1

(
vh

∏h−1
j=t (1 + ij) hpx+t

) .
If we make the simplifying assumption that it is constant and known in advance we can simplify
the denominator. Let it = i∗. Then:

1 +
ω−x−t∑
h=1

vh bt h−1∏
j=t

(1 + ij) hpx+t

 = 1 +
ω−x−t∑
h=1

(
vh bt(1 + i∗)h hpx+t

)

= 1 +
ω−x−t∑
h=1

(
vh∗ · bt · hpx+t

)
= ä∗x+t,

where v∗ = 1+i∗
1+r . Hence bt = Ft−

ä∗
x+t

.

B.2.3 Capital guarantees

There are multiple ways to define a life annuity which incorporates a capital guarantee, which
returns some capital to the annuitant at the end of the year of death, if the annuitant dies
within the first n years. When analysing a capital guarantee, the fund equation must be
modified to take into account this death benefit. Consider firstly the case when the capital
guarantee is in operation, from 0 ≤ t < n:

lx+tFt = lx+t−1Ft−1(1 + r)− lx+tbt − (lx+t−1 − lx+t)It, lxF0 = lx(S − b0), 1 ≤t ≤ n,

Ft = lx+t−1
lx+t

Ft−1(1 + r)− bt −
lx+t−1 − lx+t

lx+t
It, F0 = S − b0, 1 ≤t ≤ n,

(B.9)

where bt here is the survival benefit and It is the death benefit.

When the capital guarantee is not in operation, from time t ≥ n, the fund equation reduces to
that of an ordinary life annuity, in Equation (B.1).

In both cases, we can see Θt can be determined in the same way for all time t as Equation
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(B.3), Θt = lx+t−1−lx+t

lx+t
.

To solve for bt for the periods 0 ≤ t ≤ n we can consider the prospective reserve:

Ft− = bt + vpx+tbt + v2
2px+tbt + · · ·+ vω−x−tω−x−tpx+tbt+

vqx+tIt+1 + v2
1|qx+tIt+2 + . . . vn−tn−t−1|qx+tIn

Ft− =
ω−x−t∑
h=0

vh bt hpx+t +
n−t∑
h=1

vhIt+h h−1|qx+t

Ft− = btäx+t +
n−t∑
h=1

vhIt+h h−1|qx+t

Ft− = b äx+t +
n−t∑
h=1

vhIt+h h−1|qx+t

where the first line of the first equation signifies the survival benefit term bt and the second
line signifies the death benefit terms It+1, It+2, · · · We need the assumption of constant benefit
bt = b to specify the death benefit It in the last equation. In the last equation we can let the
term inside the summation be (GA) 1

x+t:n to denote a term insurance with variable benefit for
n years.

In the case of t > n, the benefit is the same as that of a life annuity. Hence we can combine
the previous two results to give an expression for the benefit bt = b:

b =


Ft−−(GA) 1

x+t:n

äx+t
0 ≤ t ≤ n,

Ft−
äx+t

, n < t < ω.

We now turn to the payout structure of the death benefit, It. If the death benefit It can be
written as a function of the fund reserve Ft, the benefit structure and fund equation (B.9) can
be simplified considerably. However, in practice, the death benefit depends on the amount
paid out already, or depends on the initial capital invested.

In one such setting by Boardman (2006), this product, called a money-back annuity is defined
such that the initial capital S is returned upon death to the annuitant, minus the sum of
nominal payments made so far in the contract. We set a time limit on the capital guarantee,
in contrast to the original paper where the initial capital can be returned until the sum of the
payments made so far exceeds the initial capital. The formula is given by:

It =

max(S − bt, 0), 1 ≤ t ≤ n,

0, t > n.
(B.10)
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However this is difficult to implement in our setting since the max function would require
numerical methods to calculate b.

We further assume that t is not too large, and that S > bt. We also know that b = S
äx

by
substituting t = 0 in Equation (B.4). Using this, we can rewrite (B.10) as:

It =

S − S
1
äx
× t, 1 ≤ t ≤ n,

0, t > n.
(B.11)

An alternative specification is to write the death benefit as a function of the initial capital
and time, rather than the benefit paid out. This has been adopted by Comminsure (2017)
and Challenger (2019). This results in the following respective formulations for It:

It =

S − S
1
n × t, 1 ≤ t ≤ n,

0, t > n,
(B.12)

It =

S − S
1−α
15 × t, 1 ≤ t ≤ 15, 0 < α < 1,

0, t > 15,
(B.13)

where the α is decided upon inception of the contract.

We can see the similarities in equations (B.10)-(B.13) and we propose a general formulation
for It:

It =

S − Sβ × t, 1 ≤ t ≤ n,

0, t > n.
(B.14)

We can also examine a special case of the life annuity with capital guarantees where the fund
equation simplifies considerably. This is where the death benefit is a function of the past
reserve. For the first n years, there is no risk pooling between participants, and no survival
benefits. That is, at the end of the year of death, the participant receives their investment thus
far in the fund: It = Ft−1(1 + r). Then the fund equation for the first n years (B.9) becomes:
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lx+tFt = lx+t−1Ft−1(1 + r)− It(lx+t−1 − lx+t) 1 ≤ t ≤ n

Ft = lx+t−1
lx+t

Ft−1(1 + r)−
(
lx+t−1
lx+t

− 1
)

(Ft−1(1 + r))

Ft = lx+t−1
lx+t

Ft−1(1 + r)− lx+t−1
lx+t

Ft−1(1 + r) + Ft−1(1 + r)

Ft = Ft−1(1 + r)

This is exactly the same as a bond for the first n years. There are no mortality credits: Θ = 0.
After this period, the guarantee structure and payout is the same as a (deferred) life annuity.
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