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Abstract

Retirement income providers, such as de�ned bene�t pension funds and annuity

providers, are heavily exposed to longevity risk. Some estimates suggest that each

additional year of life expectancy increases pension liability values by 3 to 4 percent.

As such, it is critical for retirement income providers to manage their longevity risk

exposure e�ectively. The traditional approach to managing longevity risk involves

transferring pension liabilities to reinsurers. However, reinsurers have a �nite ca-

pacity for assuming longevity risk. Given the rapid growth of the world's aggregate

longevity risk exposure, this limit is rapidly being approached. In recent years, the

development of a longevity risk transfer market has emerged as a potential solution

to greatly expand capacity for absorbing longevity risk.

To date, most longevity market transactions have been customised indemnity

swaps: hedges that are customised to transfer a speci�c retirement income provider's

pension liability to a counterparty. However, the complexity of having to analyse

portfolio-speci�c details has made these instruments unappealing to capital markets.

In contrast, standardised index-based hedges, in which cash�ows are tied to some

published longevity index that tracks the mortality experience of a broad population,

are much simpler for investors to manage. Therefore, they have greater potential to

develop su�cient market liquidity and become viable longevity risk transfer instru-

ments. However, with cash�ows determined by a broad longevity index rather than

the survival experience of a speci�c pension pool, index hedging exposes retirement

income providers to basis risk � a signi�cant barrier to these types of transactions.

The availability of a longevity index that closely tracks the value of longevity-

linked liabilities could signi�cantly improve hedging e�ciency. Such an index would

have to account for the major risks facing retirement income providers: longevity

risk, interest rate risk and in�ation risk. The lack of such a longevity index in the

market has turned retirement income providers away from index hedges under the

assumption that the associated basis risk exposure would remain excessive.

Our contribution to the literature is threefold. Firstly, we construct a universal

value-based longevity index whose functionality is illustrated with U.S. economic

and population data. The index is de�ned as the expected present value of a unit

of longevity and in�ation-indexed income, thereby providing an index that closely
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tracks longevity-linked liability values. It also facilitates the attribution of risks

associated with retirement income portfolios into distinct longevity risk, in�ation

risk and interest rate risk components. Through the comparison of multiple di�erent

types of indices, we �nd that all three components have a material impact on hedging

e�ciency.

Our second contribution involves the robust analysis of basis risk. We present

numerical tests demonstrating that our proposed hedging framework generates a

material reduction in basis risk relative to standard mortality rate indices widely

used in the market, such as the Life and Longevity Market Association's Lifemetrics

Index, as well as survival rate indices proposed by the Institute and Faculty of

Actuaries' Longevity Basis Risk Working Group.

Finally, we bridge the literature gap between continuous and discrete-time multi-

population mortality models by comparing the hedge e�ectiveness associated with

the constructed value-based longevity index under both mortality frameworks. It

is found that the two modelling approaches suggest relatively similar hedging out-

comes.
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Chapter 1

Introduction

1.1 Background and Research Motivation

Over recent centuries, rising living standards, lifestyle changes and improved access

to healthcare and education have driven substantial improvements in life expectancy

worldwide. Indeed, Oeppen and Vaupel (2002) �nd that the record female life

expectancy increased by 40 years between 1840 and 2000 � a rate which translates

into an improvement of 15 minutes every hour. Although this is a very positive

development, it does create retirement funding challenges for both governments and

the private sector alike. There is also uncertainty surrounding the rate of mortality

improvements in the future, creating longevity risk. The Institute and Faculty of

Actuaries (2015) de�nes longevity risk as �the risk that members of some reference

population might live longer on average than anticipated�.

In particular, retirement income providers, such as de�ned bene�t pension funds

and annuity providers, are heavily exposed to longevity risk. As people survive

to increasingly older ages, retirement income providers are obligated to pay out

lifetime income streams for potentially much longer than initially expected. Some

estimates suggest that each additional year of life expectancy increases pension

liability values by 3 to 4 percent (International Monetary Fund, 2012; Chang and

Sherris, 2018). The world's aggregate longevity risk exposure is growing rapidly.

The Global Pension Assets Study 2018 published by Willis Towers Watson (2018)

has reported that the value of de�ned bene�t pension assets has grown by 4.5% per

year over the last 20 years, and was valued at U.S.$21.3 trillion as of February 2018.

It is estimated that each year of life expectancy underestimation could potentially

cost risk holders up to U.S.$1 trillion in additional unexpected bene�t payments

(Joint Forum, 2013). Therefore, it is critical for retirement income providers to

manage longevity risk e�ectively.

There are three broad approaches that retirement income providers can take

to manage their longevity risk exposure. The traditional approach is to transfer

liabilities to life insurance or reinsurance companies (Coughlan et al., 2011). This
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can be achieved through either a pension buy-in or a pension buy-out, as described

by Blake et al. (2018).

Under a pension buy-out, both the assets and liabilities associated with a re-

tirement income portfolio are transferred to an insurer in exchange for an initial

premium. The retirement income provider is indemni�ed of any future obligations

to fund members, as the liability and its associated risks, including longevity risk,

are fully transferred to the insurer. The annuitants or pension fund members are

now exposed to the counterparty risk associated with the buy-out insurer rather

than the original retirement income provider.

Under a pension buy-in, the retirement income provider pays an initial premium

to the reinsurer and in exchange receives periodic cash �ows from the reinsurance

company to match its payments to the annuitants or pension fund members. The

retirement income portfolio's assets and liabilities are retained on balance sheet and

payments continue to be made directly to surviving members. Although pension

buy-ins eliminate longevity risk, the retirement income provider remains exposed to

the counterparty risk of the reinsurer.

However, reinsurers have a limited capacity and appetite for assuming longevity

risk (Wadsworth, 2005). Given the substantial growth in global longevity risk ex-

posure, this limit is rapidly being approached, as noted by Barrieu et al. (2012) as

well as the Joint Forum (2013). Indeed, Graziani (2014) has found that the poten-

tial worldwide demand for longevity risk transfer exceeds the supply capacity of the

global insurance industry by more than ten times. Furthermore, regulations such as

Solvency II have further enhanced the demand for longevity reinsurance as a means

of reducing solvency capital requirements (Xu et al., 2017).

Large �nancial institutions which sell both retirement income products and life

insurance policies are able to partially o�set the longevity risk exposure of their

pension liability by means of natural hedging (Cox and Lin, 2007; Loeys et al.,

2007). Retirement income portfolios have a negative exposure to longevity risk since

their liability values increase as survival rates improve. Conversely, life insurance

portfolios have positive longevity risk exposure as increasing longevity serves to

reduce the amount paid out in death bene�ts (Chang and Sherris, 2018). Therefore,

life insurers that sell both types of products can exploit the negative correlation

between the two lines of business to manage the longevity risk exposure arising

from annuity pools. However, Li and Haberman (2015) show that natural hedging

can be ine�ective due to demographic di�erences between annuity members and life

insurance policyholders. Furthermore, smaller life insurers lack the su�cient scale

to be able adequately manage their risk exposure through natural hedging.

In recent years, the development of a longevity risk transfer market has emerged

as a potential solution, with the development of various mortality and longevity-
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linked indices, instruments and derivative securities. Although still in its relatively

early stages, the development of a liquid longevity risk transfer market has the

potential to revolutionise the management of longevity risk. Given the size and depth

of global capital markets, the notion of traded longevity risk greatly expands the

overall global capacity for absorbing risks relating to retirement income portfolios.

(Coughlan, 2009; Xu et al., 2017). Such alternative risk transfer mechanisms have

been developed in other �nancial services sectors, such as catastrophe bonds in

general insurance (Lee and Yu, 2007) and mortgage-backed securities in the banking

industry (Dunn and McConnell, 1981).

The �rst capital market longevity transaction was completed in January 2008

when the U.K. pension insurer Lucida executed an index-based hedge using q-

forwards tied to J.P. Morgan's Lifemetrics Index1 for England and Wales (Coughlan,

2009). In 2010, a coalition of global investment banks, insurers and reinsurers es-

tablished the Life and Longevity Markets Association (LLMA)2, aiming to develop

a market for the trading of various mortality and longevity-linked instruments. Key

developments in the longevity risk transfer market have also been described in the

literature (see, for example, Tan et al., 2015). Despite still being in its relatively

early stages of development, the market has grown signi�cantly since 2008, as shown

in Figure 1.1, although transaction volumes in recent years have moderated.

Figure 1.1: Longevity market worldwide trading volumes from 2007 to 2018

Source: Artemis (2018)

1https://llma.org/index/index-description/
2https://llma.org/
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Table 1.1: Details of notable longevity swap transactions

Pension Fund Provider(s) Solution(s) Amount Date

Delta Lloyd RGA Re Index-based
longevity swap

e12
billion

Jun 2015

Aegon Canada Life Re Longevity swap
and reinsurance

e6 billion Jul 2015

Manweb (Scot-
tish Power)

Abbey Life Longevity swap ¿1 billion Aug 2016

AXA France RGA Re Longevity swap
and reinsurance

e1.3 bil-
lion

Nov 2016

Pension Insur-
ance Corpora-
tion

SCOR Longevity swap
and reinsurance

¿1 billion Jul 2017

British Airways
Pension Scheme

Partner Re,
Canada Life Re

Longevity swap
and reinsurance

¿1.6 bil-
lion

Aug 2017

National Grid Zurich Longevity swap ¿2 billion May 2018

Aviva Prudential
Insurance Com-
pany of America

Longevity rein-
surance

U.S.$1.4
billion

Aug 2018

Source: Artemis (2018)

From an investment perspective, the development of a longevity risk transfer

market creates new asset classes and diversi�cation opportunities. Market consen-

sus is that the correlation between longevity trends and the returns on traditional

asset classes is very limited or zero (Ribeiro and di Pietro, 2009; Anderson and Bax-

ter, 2017). Therefore, longevity and mortality-linked instruments o�er investors an

opportunity to earn a longevity risk premium in exchange for accepting risks that

integrate e�ciently into existing portfolios, thereby expanding the set of feasible

investment opportunities and improving risk-return dynamics in line with modern

portfolio theory (Markowitz, 1952).

However, although the longevity risk transfer market has grown strongly, it is

still dwarfed by the retirement income industry's exposure to longevity risk. For

example, U.K. pension funds are estimated to have an aggregate longevity risk

exposure valued at over ¿2 trillion (Barrieu et al., 2012). The total value of U.K.

longevity swaps executed in 2015 of ¿10 billion represents less than 0.5% of this

exposure (Li et al., 2017).

To date, there have been approximately 82 pure longevity transactions. These

transactions are documented by the risk transfer and capital market database Artemis

(2018)3, with several major transactions in recent years detailed in Table 1.1.

There are two broad categories of capital market longevity transfer solutions by

3www.artemis.bm/library/longevity_swaps_risk_transfers.html
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which retirement income providers can hedge their exposure to unexpected changes

in future mortality rates: customised indemnity-based hedges (indemnity hedges)

and standardised index-based hedges (index hedges). Both generally take the form

of some swap instrument whereby the hedger pays the �xed leg based on some

predetermined best estimate value (that is, expected longevity experience) plus a risk

premium, while the counterparty pays the �oating leg based on realised mortality

experience over time (Coughlan, 2009).

To date, most longevity risk transfer market transactions have been customised

or �bespoke� indemnity swaps: customised over-the-counter hedges that transfer

a retirement income provider's speci�c longevity risk exposure to a counterparty

(Anderson and Baxter, 2017). That is, the survival experience over time of the

members and any other bene�ciaries within the exposure will determine the cash-

�ows associated with the hedging instrument, with the pension fund or annuity

provider retaining zero residual �nancial exposure. This type of survivor swap in-

volves the hedger paying the expected annuity amounts to the counterparty which

in return pays the actual realised payments to surviving members or annuitants over

time. The counterparty may be the end investor, or may pass on the exposure to

other investors and �nancial institutions. There is no basis risk associated with the

hedge for the retirement income provider as the counterparty e�ectively assumes all

obligations arising from the exposure. From an economic perspective, an indemnity

hedge is identical to the traditional approach of transferring the annuity book to

a life insurer or reinsurer, however in the format of a capital market instrument

(Coughlan, 2009).

Figure 1.2 shows the structure and parties involved in the �rst ever indemnity

hedge transaction, which took place in July 2008 when the U.K.'s Canada Life

arranged a fully collateralised 40 year survivor swap with J.P. Morgan worth ¿500

million. As shown in Figure 1.2, J.P. Morgan subsequently transferred the exposure

to a group of hedge funds and capital market investors (Trading Risk, 2008). The

largest longevity market transaction completed to date also took the form of a

customised hedge: in June 2014, the British Telecom Pension Scheme entered into a

¿16 billion indemnity swap with the Prudential Insurance Company of America, a

deal which covered more than 25% of the pension fund's total longevity risk exposure

(Artemis, 2014).

The major drawback to indemnity hedges is that these transactions require the

disclosure and analysis of fund-speci�c details on the portfolio being hedged. Details

such as the portfolio's particular demographic composition, mortality experience and

bene�t structure need to be made available to any counterparties for both pricing

and hedge settlement purposes (Coughlan, 2009). This makes it substantially more

complex and costly for capital markets to analyse, value and manage customised
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Figure 1.2: Transaction diagram for the Canada Life customised longevity swap

Source: J.P. Morgan; Coughlan (2009)

longevity hedging instruments, thereby discouraging potential investors and inhibit-

ing the development of market liquidity. This in turn can make it cost prohibitive for

retirement income providers to hedge their longevity risk exposure in this manner.

An index hedge, however, is based on the mortality experience over time of some

underlying reference population as represented by a published longevity index. For

example, the Lifemetrics Index (J.P. Morgan, 2007) provides population-level life

expectancies and mortality rates for various countries. Index hedges are generally

structured as q-forwards whereby the retirement income provider pays the expected

mortality rate of the reference population plus a longevity risk premium at some

speci�ed future time point, while the counterparty pays the realised mortality rate

(as published by the speci�ed longevity index) at that time. As outlined previ-

ously, the �rst ever capital market longevity transaction was completed in January

2008 when the U.K. pension insurer Lucida executed an index-based hedge using

q-forwards tied to the Lifemetrics Index for England and Wales (Coughlan, 2009).

In February 2012, Dutch life insurer Aegon arranged a e12 billion index hedge with

Deutsche Bank in which the national population of the Netherlands was used as the

underlying reference population (Li et al., 2017).

In contrast to indemnity hedges, index hedges do not require the analysis of

portfolio-speci�c details; cash�ows only depend on population-level mortality expe-
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rience as represented by the published longevity index which makes it much simpler

for investors to understand and manage the associated risks. Therefore, these in-

struments have a much greater potential to develop su�cient market liquidity over

time and become viable longevity risk transfer vehicles. Furthermore, index hedges

are substantially less credit intensive than indemnity hedges, are easier to unwind

or adjust over time if needed and provide for greater transparency (Villegas et al.,

2017). They also represent the only viable approach to hedging the entire longevity

risk exposure of larger pension funds (Coughlan, 2009) and are the most appropriate

instruments for hedging the risks arising from retirement income portfolios with de-

ferred income elements (Coughlan, 2009a). However, despite the many advantages

associated with index-based longevity hedging, several barriers have prevented the

market from embracing these types of standardised transactions. These barriers

essentially relate to the fact that index-based hedges cannot hedge the speci�c mor-

tality experience of a given annuity book or pension fund because, by de�nition,

payments are determined with respect to the mortality experience of a broad ref-

erence population as represented by a published longevity index (Coughlan et al.,

2007). Therefore, while index hedges can reduce a retirement income provider's

longevity risk exposure, it cannot completely indemnify them of the exposure; that

is, these instruments are subject to longevity basis risk. Given the dominance of

customised hedging transactions observed to date in the longevity risk transfer mar-

ket, the basis risk issue has evidently proved a signi�cant deterrent to the use of

index-based longevity hedges (Li et al., 2015).

To date, the few index-based longevity hedging transactions have referenced

longevity indices linked to national life tables such as the Lifemetrics Index and

the Xpect-Club Vita Index (Deutsche Börse, 2012). However, it is insu�cient to

only focus on longevity risk since retirement income providers also retain material

exposure to interest rate and in�ation risk (Towers Watson, 2013). The failure of

major indices to incorporate these risks have deterred retirement income providers

from pursing index hedges under the assumption that the basis risk exposure would

remain signi�cant. However, the availability of a longevity index that closely tracks

the value of longevity-linked liabilities could signi�cantly reduce basis risk (Sweet-

ing, 2010; Wills and Sherris, 2010). This notion motivated the development of

value-based longevity indices by Sherris (2009) � indices which are constructed to

track the expected present value of a unit of longevity-indexed income. As demon-

strated in Chang and Sherris (2018), value-based longevity indices are associated

with improved hedge outcomes and reduced levels of longevity basis risk relative to

mortality rate indices. These �ndings have the potential to revitalise the demand

for index-based hedging solutions.

Furthermore, in order for index hedges to gain industry acceptance as viable
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longevity risk management vehicles, retirement income providers must be able to

e�ectively assess hedge e�ciency in the context of their individual portfolios. This

requires a �exible yet robust methodology for quantifying the longevity basis risk

exposure associated with a given longevity index for a given retirement income

portfolio (Haberman et al., 2014; Villegas et al., 2017; Li et al., 2017).

This brings us to our research, which aims to address the aforementioned barriers

to index-based longevity hedging as a means of incentivising and accelerating the

transition towards the standardised transfer of longevity risk. To this end, our

research is ultimately guided by the goal of promoting the capital market as a viable

vehicle for absorbing the risks arising from the management of retirement income

portfolios.

1.2 Research Objectives

There are three objectives that our research aims to accomplish. These objec-

tives represent important original contributions to the literature while also retaining

the practically-focused motivation of supporting the progression towards the index-

based hedging of risks arising from retirement income portfolios such as annuity

books and de�ned bene�t pension schemes.

1.2.1 Construction of a Universal Value-Based Longevity In-

dex

Our �rst research objective is to construct a universal value-based longevity index

and illustrate its functionality with the aid of U.S. economic and population data.

Inspired by Sherris (2009), the index will be de�ned as the expected present value of

a unit of longevity and in�ation-indexed income, thereby incorporating both interest

rate and in�ation risk unlike other value-based longevity indices constructed in the

literature which only consider interest rate risk. The index will also be split by

gender � a distinguishing feature from BlackRock's Cost of Retirement Indices4.

This contribution will address the �rst key barrier to index-based longevity hedging

(that is, the availability of an index that closely tracks the value of longevity-linked

liabilities).

Furthermore, although the three main aspects of risk inherent in standard re-

tirement income portfolios have been identi�ed in the literature (see, for example,

Towers Watson, 2013), there has been little in terms of quantifying the relative

impact of each risk factor. The construction of the aforementioned value-based

4https://www.blackrock.com/cori/fact-sheets
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longevity index can therefore facilitate an additional contribution to the literature

through the attribution of risk arising from retirement income portfolios into distinct

longevity risk, interest rate risk and in�ation risk components.

1.2.2 Decomposed Longevity Basis Risk Quanti�cation for

Hedge Comparisons

Our second major research objective is to quantify the residual basis risk exposure

arising from standardised hedges tied to the constructed value-based longevity index

using the decomposed framework proposed by the Longevity Basis Risk Working

Group (LBRWG) (Haberman et al., 2014; Villegas et al., 2017; Li et al., 2017). This

method separates longevity basis risk into its constituent components, allowing for a

more holistic and thorough evaluation. By applying this framework to our universal

value-based longevity index and demonstrating the reduction in basis risk relative to

standard mortality rate indices, we will contribute towards the second major barrier

to index-based longevity hedging described above (that is, the minimisation and

robust quanti�cation of longevity basis risk). Furthermore, to date, no work in the

literature has applied the LBRWG's decomposed basis risk quanti�cation framework

to a value-based longevity index, marking another important literature gap that we

expect to �ll.

1.2.3 Comparison of Continuous-Time and Discrete-TimeMulti-

Population Mortality Modelling Frameworks

Our base research methodology entails a continuous-time multi-population mortality

modelling approach. However, we will also repeat the index construction process

and basis risk analysis within a discrete-time mortality modelling framework. This

will facilitate the comparison of hedge e�ectiveness under the two di�erent mortality

modelling regimes. To date, no such comparison has been made in the longevity

risk transfer market literature. Furthermore, this contribution will also support the

assessment of model risk on hedge outcomes.

Ultimately by making these contributions to the literature, our research has the

potential to incentivise and accelerate the transition towards index-based longevity

hedging. This is of critical importance since index-based longevity hedging repre-

sents arguably the most realistic prospect for a viable and liquid longevity risk trans-

fer market, given all of the complexities associated with indemnity-based longevity

hedges.

19



Chapter 1

1.3 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 reviews the literature

on the key events in the longevity risk transfer market to date, including the devel-

opment of longevity-linked instruments and indices, the conception of value-based

longevity indices, as well as longevity basis risk quanti�cation techniques such as the

use of continuous and discrete-time multi-population mortality models. Chapter 3

describes the estimation, forecasting and simulation of the continuous and discrete-

time mortality modelling framework adopted in this thesis. The modelling of the

nominal and real term structure of interest rates is covered in Chapter 4. Chapter

5 describes the design of the proposed value-based longevity index and the process

for calibrating and evaluating hedges tied to the constructed index. Furthermore,

we also present a range of sensitivity analyses, including the comparison of hedge

e�ectiveness for various longevity indices under di�erent mortality modelling frame-

works. Chapter 6 concludes the thesis by reiterating the fundamental contributions

of our research, the limitations of our �ndings as well as the scope for future research

to extend and build upon our contributions to the literature.
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Literature Review

In this chapter, we review the literature detailing the development of the longevity

risk transfer market, including the range of mortality and longevity-linked securi-

ties and derivatives available as well as the major longevity indices, in Section 2.1.

As alluded to in Chapter 1, basis risk is a critical issue when it comes to index-

based longevity hedging. Therefore, Section 2.2 explores basis risk in substantial

depth, both in terms of its conceptual decomposition as well as how each of its con-

stituent components can be modelled and quanti�ed by retirement income providers.

In Section 2.3, we review the development of multi-population mortality models �

stochastic actuarial models that project how the mortality rates of several popula-

tions may evolve over time. Section 2.4 summarises the literature on value-based

longevity indices, including the motivation for their development, industry innova-

tions and their e�ectiveness in index hedging applications. Finally, we identify the

gaps in the existing literature that our research is able to address in Section 2.5.

2.1 The Longevity Risk Transfer Market

Although still in its initial stages, the development of a liquid market for hedgers and

investors to actively trade mortality and longevity-linked securities and derivatives

has the potential to revolutionise the management of longevity risk. Given the size

and depth of capital markets, the concept of longevity risk trading greatly expands

the overall capacity for absorbing global longevity risk exposure (Blake et al., 2009).

Pension funds and annuity providers can reduce their counterparty risk exposure

by using collateralised instruments (that is, longevity derivatives such as survivor

swaps) and by diversifying their counterparty base beyond just life insurers and

reinsurers. Furthermore, unlike insurance-based solutions, traded longevity-linked

instruments have the potential to be highly liquid and therefore unwound with

investors or institutions other than the original counterparty (Coughlan, 2009).
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2.1.1 Longevity-Linked Instruments

There are various instruments and securities available in the longevity market as

detailed in Table 2.1 (Li et al., 2017).

Longevity bonds (Blake and Burrows, 2001) remain the simplest of these secu-

rities, paying out periodic coupons, the size of which are indexed to the percentage

of the underlying reference population still alive on the date of coupon payment as

depicted in Figure 2.1.

Figure 2.1: Longevity bond cash�ows

Source: Wehrhahn (2005)

Longevity (or survivor) swaps (Dowd, 2003; Dowd et al., 2006) represent a deriva-

tive form of longevity bonds, exchanging a stream of �xed future cash�ows for a

�oating stream indexed to the realised survival experience of the reference pop-

ulation as shown in Figure 2.2. Such structures have the distinct advantages of

providing greater �exibility and not requiring retirement income providers to mod-

ify their asset allocations in response to a signi�cant upfront capital investment as

is the case when purchasing longevity bonds (Coughlan, 2009). Indeed, longevity

swaps represent the most commonly traded instrument type in the current longevity

risk transfer market (Xu et al., 2017).

The majority of the existing literature has proposed simpler derivative structures,

involving only a single exchange payments at a given future date. For example,

Coughlan et al. (2007) describe the q-forward contract � a transaction in which the

hedger receives the net di�erence between the realised and forward mortality rates

of the reference population at the payment date (Figure 2.4).
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Table 2.1: Longevity-linked instruments

Instrument Proposed Description

Longevity nond Blake and Bur-
rows (2001);
Dowd (2003)

Coupon sizes are linked to the percentage of the
reference population who are still alive (i.e.
survivor index) on the coupon payment dates, in
which the survivor index at time t is calculated as

tp65 = (1 − q65,0)(1 − q66,1)...(1 − q65+t−1,t−1) and
qx,t is the mortality rate of the reference
population observed in year t

Longevity swap Dowd (2003);
Dowd et al.
(2006)

Two series of future cash �ows are exchanged, one
of which is linked to the percentage of the
reference population who are still alive (i.e.
survivor index) on the payment dates, and the
other series is �xed at time 0

q-forward Coughlan et al.
(2007)

To a �xed rate receiver, a payo� of (qforwardx,t − qx,t)
is made after T + 1 years (maturity), in which
qforwardx,t is the forward mortality rate set at time 0
and qx,t is the actual mortality rate of the reference
population observed in year T ; for a �oating rate
receiver, the payo� is (qx,t − qforwardx,t ) instead

S-forward Life and
Longevity Mar-
kets Association
(2010)

The payo�s are similar to those of the q-forward,
with the mortality rate being replaced by the
percentage of the reference population who are
still alive (i.e. survivor index) on maturity

K-forward Chan et al.
(2014); Tan
et al. (2014)

To a �xed rate receiver, a payo� of
(Kforward

t,i −Kt,i) is made after T + 1 years
(maturity), in which (Kt,i is the i

th CBD model
parameter as the ith type of mortality index in
year t), Kforward

t,i is the forward mortality index set
at time 0 and Kt,i is the mortality index
calculated from the actual observations of the
reference population in year T; for a �oating rate
receiver, the payo� is (Kt,i −Kforward

t,i ) instead

Mortality option Cairns et al.
(2008)

To a call holder, a payo� of max(qx,t − qstrikex,t , 0) is
made after T + 1 years (maturity), in which qstrikex,t

is a �xed rate set at time 0 and qx,t is the actual
mortality rate of the reference population observed
in year T ; for a put holder, the payo� is
max(qstrikex,t − qx,t, 0) instead

Survivor option Dowd (2003) The payo�s are similar to those of the mortality
option, with the mortality rate being replaced by
the percentage of the reference population who are
still alive (i.e. survivor index) on maturity

Source: Adapted from Li et al. (2017)
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Figure 2.2: Longevity swap cash�ows

Source: J.P. Morgan; Coughlan (2009)

Figure 2.3: Net q-forward payment as a function of the realised population mor-
tality rate

Source: J.P. Morgan; Coughlan (2009)
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Similarly, the Life and Longevity Markets Association (2010) propose the trading

of S-forwards; derivatives which are similar in structure to q-forwards but where the

swap settlement is determined by survival rather than mortality rates.

Figure 2.4: Net S-forward payment as a function of the realised population survival
rate

Source: J.P. Morgan; Coughlan (2009)

2.1.2 Longevity Indices

A key requirement for the use of any of the above standardised capital market

longevity hedging instruments is a published index to underlie the derivative. It

is critical that any longevity index is transparent, objective and can serve as an

unbiased point of reference for all participants in the longevity risk transfer market

(Loeys et al., 2007; Sweeting, 2010). There are numerous existing longevity indices,

as described in Coughlan (2009) and Chang and Sherris (2018).

Credit Suisse launched the �rst longevity index in December 2005 based on U.S.

population-level mortality data. The index included current, historical and projected

mortality rates (Coughlan, 2009).

J.P. Morgan (2007) launched the Lifemetrics Index1 which provides male and

female period life expectancies, crude central mortality rates and graduated initial

mortality rates for the U.S., England and Wales, the Netherlands and Germany

(Coughlan et al., 2007). In 2010, the management of the Lifemetrics Index was

assumed by the LLMA (Chang and Sherris, 2018).

Deutsche Börse launched the Xpect-Club Vita Index2 for Germany, the Nether-

lands and England and Wales in March 2008 (Xu et al., 2017). The Club Vita

1https://llma.org/index/index-description/
2http://www.xpect-index.com
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indices also di�erentiate survival experience by the pension amount received as a

proxy for di�erent socio-economic classes (see Figure 2.5).

Figure 2.5: Xpect survival indices by pension amount (England and Wales 1935
to 1939 male cohort)

Source: Deutsche Börse (2012)

2.2 Longevity Basis Risk

As outlined in Chapter 1, longevity basis risk remains a major barrier to index-

based longevity hedging (Villegas et al., 2017). Index hedges cannot hedge the

speci�c mortality experience of a given retirement income portfolio as, by de�nition,

payments are determined with respect to the mortality experience of a broad ref-

erence population as represented by a published longevity index (Coughlan et al.,

2007).

Longevity basis risk associated with standardised longevity hedging instruments

can be decomposed into three distinct components (Mosher and Sagoo, 2011), namely
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demographic basis risk, structuring basis risk and sampling basis risk.

1. Demographic basis risk: the composition of the retirement income portfo-

lio can have signi�cant socio-economic or demographic di�erences from the

broader population underlying the referenced longevity index. For example,

members within a retirement income portfolio may be wealthier on average

than the national population, which may cause their future mortality expe-

rience to deviate from the average across the population. Indeed, Coughlan

et al. (2011) compare the mortality trends of the national population of Eng-

land and Wales (E.W.) to a a sub-population of U.K. individuals who hold life

insurance policies.

Figure 2.6: Comparison of male mortality rates for the U.K. assured and E.W.
national populations

Source: Coughlan et al. (2011)

It is evident from Figure 2.6 that the assured population has signi�cantly

lower mortality rates than the national average at all ages beyond 35 (a). Fur-

thermore, although the mortality rates of both populations have consistently

trended downwards over time, assured mortality rates have perennially been

lower than the national population (b). Therefore, a hedging instrument in-

dexed to population-level longevity outcomes would be imperfect in such a

scenario.

2. Structuring basis risk: the timing of cash�ows from the hedging instrument

will, in general, di�er from the payments made by the retirement income
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provider to their surviving members or annuitants. For example, retirement in-

come bene�ts might be paid monthly or fortnightly to pension fund members,

whereas the swap agreement might only be settled annually. Alternatively,

the maturity of the hedging instrument may be signi�cantly shorter than the

run-o� horizon of the retirement income portfolio (Haberman et al., 2014).

3. Sampling basis risk: due to the �nite number of individual lives within re-

tirement income portfolios, the longevity outcomes experienced by the pool of

members or annuitants is subject to sampling variability. Even for two pop-

ulations which are demographically identical, there will inevitably be random

variation about expected mortality outcomes. However, sampling basis risk

can be diversi�ed away by increasing the number of individual lives within the

exposure.

An organisation called the Longevity Basis Risk Working Group (LBRWG) has

noted that, in addition to the prevalence of longevity basis risk, the lack of a robust

framework for quantifying longevity basis risk has further impeded the appetite for

standardised index-based longevity hedging solutions. To date the LBRWG has

published Phase 1 (Haberman et al., 2014) and Phase 2 (Li et al., 2017) technical

reports as well as work by Villegas et al. (2017). The fundamental aim of these

publications is to:

�develop a readily-applicable methodology for quantifying the basis risk arising

from the use of population-based mortality indices for managing the longevity risk

inherent in speci�c blocks of pension bene�ts or annuitant liabilities.�

The LBRWG builds on the decomposition of longevity basis risk proposed in

Mosher and Sagoo (2011) by developing techniques to quantify each of three indi-

vidual components. In particular, demographic basis risk is modelled through multi-

population mortality modelling frameworks (see Section 2.3), structuring basis risk

is incorporated using numerical optimisation procedures, while random sampling

techniques are implemented to account for sampling basis risk.

The Longevity Risk Reduction (LRR) metric is a key indicator used to evalu-

ate hedge e�ectiveness (Coughlan et al., 2011; Li et al., 2017). LRR is based on

the percentage reduction in portfolio risk, as represented by a given risk measure

(for example, variance). Note that some authors reference the LRR metric using

alternate terms such as �hedge e�ciency� (Chang and Sherris, 2018). The LRR is

de�ned as

Longevity Risk Reduction = (1 − ρ(Hedged Portfolio)

ρ(Unhedged Portfolio)
) × 100%, (2.1)

where ρ(Unhedged Portfolio) and ρ(Hedged Portfolio) refer to some selected risk

measure of the present value of the retirement income provider's net position before
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and after the hedge has been applied, respectively. There are various risk measures

that have been adopted in the literature for LRR calculations including variance (Li

and Hardy, 2011; Cairns et al., 2014), Value-at-Risk (Li et al., 2017) and expected

shortfall (Ngai and Sherris, 2011). As Li et al. (2017) highlight, given that various

solvency regulations, such as Solvency II's Solvency Capital Requirement, refer to

the Value-at-Risk in their capital guidelines, it may be of particular interest for

retirement income providers to adopt this risk measure in their LRR calculations.

Other researchers instead convey visual longevity basis risk metrics such as net

liability value histograms (Coughlan et al., 2011) as well as Mahalanobis distance

(Chan et al., 2016; Xu et al., 2017).

2.3 Multi-Population Mortality Modelling

The modelling of demographic basis risk requires the use of a multi-population

mortality modelling framework (Li et al., 2015). As noted by Pretty Sagoo, the

Chair of the LLMA and IFoA Joint Longevity Basis Risk Working Group as part of

the LBRWG Phase 1 report (Haberman et al., 2014):

�To be able to assess demographic basis risk, the required model needs to able

to capture the mortality trends in both the reference population backing the hedging

instrument and in the population of the portfolio being hedged.�

Multi-population mortality models are �tted to the mortality data of multiple

di�erent populations, modelling their relationship over time and projecting the joint

mortality outcomes of the di�erent populations into the future, thereby capturing

mortality dependence structures.

Most multi-population mortality models described in the literature are con-

structed in a discrete time mortality modelling framework. These models are typ-

ically based on the notion of coherent forecasts as proposed by Li and Lee (2005).

A multi-population mortality model is coherent if the mortality rate projections of

the multiple related populations do not diverge inde�nitely in the long run � an idea

that has been mathematically formalised in Cairns et al. (2011) who stated that the

ratio of projected mortality rates should become stable for long term forecasts.

Villegas et al. (2017) provide a comprehensive overview of the �universe� of

discrete-time multi-population mortality models, as depicted in Figure 2.7.

There are three main categories of discrete-time multi-population mortality mod-

els:

1. Lee-Carter extensions that are based on the form of the Lee-Carter model (Lee

and Carter, 1992).
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2. Cairns-Blake-Dowd (CBD) extensions that are based on the form of the CBD

model (Cairns et al., 2006).

3. Other models: discrete-time multi-population mortality models that do not �t

into either of the �rst two categories.

Of this large set of models, the LBRWG recommends that retirement income

providers use a decision tree framework to select the most appropriate multi-population

mortality modelling methodology, based on the speci�c characteristics of the exposed

portfolio (see Figure 2.8). In particular, only three broad modelling approaches

need to be considered: the M7-M5 model (a multi-population extension of the CBD

model), the Common Age E�ect (CAE) plus Cohorts model (a multi-population ex-

tension of the Lee Carter model) and the characterisation approach (for retirement

income portfolios with less than 8 years of reliable data or fewer than 25,000 lives)

which involves �tting either the M7-M5 or CAE plus cohorts model to a book pop-

ulation which approximates the demographic composition of the retirement income

portfolio. Full details of these modelling techniques are provided in Haberman et al.

(2014) and Li et al. (2017).

However, as noted in Xu et al. (2017), a continuous-time multi-population mor-

tality model is more �exible for applications combining mortality and �nancial mod-

elling elements. Despite this, the literature on continuous-time multi-population

mortality modelling is much less developed. The only such model constructed in

the a�ne framework is the joint a�ne term structure model developed in Xu et al.

(2017). This model is inspired by multi-country a�ne term structure interest rate

models which have shown to be �exible, tractable and have a good empirical �t (see,

for example, Egorov et al., 2011), as well as the fact that single-population a�ne

term structure mortality models have been shown to capture mortality trends well

(see, for example, Blackburn and Sherris, 2013). Three latent time-varying factors

are incorporated into the joint ATSM: a single �common� factor which impacts the

mortality dynamics of both populations as well as two �local� factors which only

impact the mortality of the associated local populations.
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2.4 Value-Based Longevity Indices

To date, index-based longevity hedging transactions have referenced longevity in-

dices linked to national life tables such as the Lifemetrics Index and the Xpect-Club

Vita Index. However, as articulated in Chapter 1, the failure of such indices to in-

corporate the other major risk factors associated with retirement income portfolios,

such as interest rate and in�ation risk (Towers Watson, 2013), has deterred providers

from such hedges under the assumption that the basis risk exposure would remain

signi�cant. This notion motivated the development of value-based longevity indices

in Sherris (2009) � indices which are constructed to track the expected present value

of a unit of longevity-indexed income.

In 2013, the global asset manager BlackRock launched the Cost of Retirement

Index (CoRI)3. Twenty U.S. cohorts are represented across the CoRI � one for each

year in which an individual attains age 65 from 2006 to 2025. These correspond to

the cohorts born in years 1941 to 1960 (Xu et al., 2017). BlackRock (2018) describes

the CoRI as follows:

�The CoRI Indexes seek to track the estimated cost of a dollar of future retirement

income. By one dollar of future retirement income, we mean one dollar per year

beginning at age 65, lasting as long as you live. For example, a CoRI Index level of

$13.54 means that a dollar of life contingent income beginning at age 65 (or now if

65 and older) would cost $13.54 today.�

The CoRI also includes an annual cost-of-living adjustment to preserve retirees'

real purchasing power over time. Recent CoRI levels across the di�erent cohorts are

presented in Figure 2.9.

The CoRI is a function of �ve di�erent factors (see Figure 2.10). In addition

to longevity risk, interest rate risk and in�ation risk, the CoRI also accounts for

the market price of longevity risk based on the current pricing of retirement income

products by providers. Therefore, the CoRI would not be an appropriate longevity

index to underlie standardised capital market longevity hedging instruments. As

described by Sweeting (2010), longevity indices must be calculated in an objective

and transparent manner. Since retirement income providers are able to directly

in�uence the CoRI through their pricing policies, the index would not be perceived

as an independent, objective representation of longevity outcomes if used for index-

hedging purposes.

Xu et al. (2017) construct value-based longevity indices based on the national

populations of Australia, the U.K., the Netherlands and France. They subsequently

design an index-based hedging strategy in which an Australian retirement income

portfolio is hedged using the U.K. index, as well as a strategy in which a Dutch

3https://www.blackrock.com/cori/fact-sheets
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Figure 2.9: BlackRock's Cost of Retirement Index showing the $ value of the index
associated with twenty U.S. cohorts as at 24/10/2018

Source: BlackRock (2018)

portfolio is hedged against the French index. The authors �nd that basis risk is

signi�cantly lower in the Netherlands-France example; a di�erential that they at-

tribute to the common interest rate between the two countries. This demonstrates

that interest rate risk is a material element in the hedging framework, implying that

value-based longevity indices have the capacity to improve hedge outcomes through

their potential to incorporate interest rate risk in addition to longevity risk.

Indeed, value-based longevity indices have the capacity to integrate all of the ma-

jor risk factors associated with the provision of retirement income products (Wills

and Sherris, 2010): longevity risk, interest rate risk and in�ation risk (Towers Wat-

son, 2013). Therefore, such indices should intuitively be associated with lower levels

of basis risk relative to mortality rate indices (for example, the Lifemetrics Index and

the Xpect-Club Vita Index) when used to underlie standardised longevity hedging
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Figure 2.10: CoRI determinants

Source: BlackRock (2018)

transactions. Chang and Sherris (2018) test this hypothesis by comparing the the

longevity basis risk of two di�erent hedge transactions:

• an index swap contract on a value-based longevity index representing the ex-

pected present value of a standardised annual payment of a unit of longevity-

indexed income to a group of Australian males aged 65 years, and

• an S-forward based on the population survival rate of the national cohort of

65 year old males.

The authors �nd that the basis risk exposure associated with the value-based

longevity index is signi�cantly lower than that of the S-forward contract across all

book sizes. In particular, the relative out-performance of the former is substantially

greater for larger retirement income portfolios where sampling basis risk lacks the

requisite leverage to materially impact hedge outcomes. While this analysis did not

incorporate demographic basis risk nor in�ation-indexation of retirement bene�ts,

it demonstrates the potential for value-based longevity indices to signi�cantly im-

prove standardised longevity hedging outcomes. This, in turn, has the capacity to

stimulate further growth and development in the longevity risk transfer market.

2.5 Gaps in the Literature

While various value-based longevity indices have been proposed and constructed in

the literature, to date none have incorporated all three of the major risk factors

associated with retirement income portfolios (that is, longevity risk, interest rate

risk and in�ation risk). We expect to �ll this literature gap. Furthermore, by

constructing such an index, the attribution of risk among these three elements can
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be estimated; to date no such decomposition has appeared in the literature to our

knowledge.

Additionally, while various authors have assessed the basis risk associated with

value-based longevity indices, none have engaged the holistic, decomposed quanti�-

cation framework developed by the LBRWG. For example, Xu et al. (2017) account

for demographic basis risk in their analysis, while Chang and Sherris (2018) incorpo-

rate sampling basis risk. By assessing all constituent components of longevity basis

risk, our research can �ll an important literature gap and contribute towards the

robust evaluation of index-based longevity hedging. Finally, while multi-population

mortality modelling frameworks have been developed, no work has compared the

hedging outcomes associated with the two di�erent frameworks � a contribution

which will additionally facilitate the assessment of model risk on hedge outcomes.
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Mortality Modelling Frameworks

This chapter describes the mortality modelling techniques adopted in this thesis.

Section 3.1 details a joint a�ne term structure model; a continuous-time multi-

population mortality model that utilises concepts from the �nancial literature to

describe the relationship between the reference and book populations in an a�ne

framework. In Section 3.2, we calibrate and forecast a discrete-time multi-population

mortality model called the M7-M5 model, a model used extensively by the LBRWG.

3.1 Joint A�ne Term Structure Model

This section details the development of a multi-factor joint a�ne term structure

model (ATSM) for mortality, as developed in Xu et al. (2017). The model consists

of two populations: a �reference� population (R) which refers to the population

underlying the value-based longevity index, as well as a �book� population (B) which

refers to the portfolio to be hedged against the value-based longevity index. For

example, B could consist of members of a de�ned bene�t pension fund or a pool of

lifetime annuity recipients.

3.1.1 Model Speci�cation

Three latent time-varying factors are incorporated into the modelling framework:

• a �local� factor Rx,t which only impacts the mortality dynamics of the reference

population R,

• a �local� factor Bx,t which only impacts the mortality dynamics of the book

population B, and

• a �common� factor Cx,t which a�ects the mortality of both the reference popu-

lation R as well as the book population B and thereby captures the dependence

in mortality experience.
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The full mathematical details on the joint ATSM can be found in Xu et al. (2017).

Starting from a given age x at initial time t, the average mortality intensities of the

two populations are modelled as a�ne functions of the time-varying factors

µ̄Rx,t = δR,0 + δR,1Cx,t + δR,2Rx,t, (3.1)

µ̄Bx,t = δB,0 + δB,1Cx,t + δB,2Bx,t. (3.2)

As in Xu et al. (2017), the factors are assumed to evolve independently. This im-

plies that the common factor does not depend on the local factors, which allows the

joint ATSM to be decomposed into two single-population term structure mortality

models (Egorov et al., 2011).

Due to the incompleteness of the longevity market, Xu et al. (2017) de�ne a

best-estimate measure Q̄, �xed to observed mortality. However, because we assume

that the market price of longevity risk is zero, factor dynamics under the risk neutral

measure Q, which are needed for pricing purposes, are identical to the best estimate

measure Q̄. Factor dynamics under the risk neutral measure Q are
dCx,t

dRx,t

dBx,t

 = −


φ1 0 0

0 φ2 0

0 0 φ3



Cx,t

Rx,t

Bx,t

 dt+


σ1 0 0

0 σ2 0

0 0 σ3



dWQ,C

t

dWQ,R
t

dWQ,B
t

 , (3.3)

where

• φ1, φ2, φ3, σ1, σ2 and σ3 are parameters, and

• WQ,C
t , WQ,R

t and WQ,B
t are Wiener processes under the risk neutral measure.

Under the real-world measure P , the factors evolve as
dCx,t

dRx,t

dBx,t

 = −


ψ1 0 0

0 ψ2 0

0 0 ψ3



Cx,t

Rx,t

Bx,t

 dt+


σ1 0 0

0 σ2 0

0 0 σ3



dW P,C

t

dW P,R
t

dW P,B
t

 , (3.4)

where

• ψ1, ψ2, ψ3, σ1, σ2 and σ3 are parameters, and

• W P,C
t , W P,R

t and W P,B
t are Wiener processes under the real-world measure.

Xu et al. (2017) show that under this framework the survival probabilities of the

reference and book populations are respectively given by

SR(x, t, T ) = eB1(t,T )Cx,t+B2(t,T )Rx,t+AR(t,T ), (3.5)

SB(x, t, T ) = eB1(t,T )Cx,t+B3(t,T )Bx,t+AB(t,T ), (3.6)
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where

Bj(t, T ) = −1 − e−φj(T−t)

φj
for j = 1, 2, 3,

AR(t, T ) =
1

2

∑
j=1,2

σ2
j

φ3
j

[
1

2
(1 − e−2φj(T−t)) − 2(1 − e−φj(T−t)) + φj(T − t)],

AB(t, T ) =
1

2

∑
j=1,3

σ2
j

φ3
j

[
1

2
(1 − e−2φj(T−t)) − 2(1 − e−φj(T−t)) + φj(T − t)].

The average force of mortality curve for the reference and book populations

respectively are

µ̄Rx,t(T ) = − 1

T − t
log[SR(x, t, T )]

= − 1

T − t
[B1(t, T )Cx,t +B2(t, T )Rx,t + ARt (t, T )]

=
1 − e−φ1(T−t)

φ1(T − t)
Cx,t +

1 − e−φ2(T−t)

φ2(T − t)
Rx,t −

ARt (t, T )

T − t
, (3.7)

µ̄Bx,t(T ) = − 1

T − t
log[SB(x, t, T )]

= − 1

T − t
[B1(t, T )Cx,t +B3(t, T )Bx,t + ABt (t, T )]

=
1 − e−φ1(T−t)

φ1(T − t)
Cx,t +

1 − e−φ3(T−t)

φ3(T − t)
Bx,t −

ABt (t, T )

T − t
. (3.8)

3.1.2 Model Calibration

The model can be written in state space form and can therefore be estimated using

the Kalman �lter (Kalman, 1960). In particular, the state space form consists of

a measurement equation, which speci�es the relationship between the average mor-

tality intensities µ̄x,t and the factors Rx,t, Bx,t and Cx,t, as well as a state transition

equation which describes the time series dynamics of the latent time-varying factors.

For the joint ATSM, Xu et al. (2017) show that the measurement equation is

~µx,t = B ~Xt − ~A+ ~εt, ~εt ∼ N2k(~0, H), (3.9)
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where

~µx,t =



µ̄Rx,t(τ1)
...

µ̄Rx,t(τk)

µ̄Bx,t(τ1)
...

µ̄Bx,t(τk)


, B =



1−e−φ1τ1

φ1τ1
1−e−φ2τ1

φ2τ1
0

...
...

...

1−e−φ1τk

φ1τk

1−e−φ2τk

φ2τk
0

1−e−φ1τ1

φ1τ1
0 1−e−φ3τ1

φ3τ1
...

...
...

1−e−φ1τk

φ1τk
0 1−e−φ3τk

φ3τk


, Xt =


Ct

Rt

Bt

 ,

A =



1
2τ1

∑
i=1,2

σ2
i

φ3
i
[1
2
(1 − e−2φiτ1) − 2(1 − e−φiτ1) + φiτ1]

...

1
2τk

∑
i=1,2

σ2
i

φ3
i
[1
2
(1 − e−2φiτk) − 2(1 − e−φiτk) + φiτk]

1
2τ1

∑
i=1,3

σ2
i

φ3
i
[1
2
(1 − e−2φiτ1) − 2(1 − e−φiτ1) + φiτ1]

...

1
2τk

∑
i=1,3

σ2
i

φ3
i
[1
2
(1 − e−2φiτk) − 2(1 − e−φiτk) + φiτk]


,

H is the (diagonal) covariance matrix of the normal error terms and k is the number

of ages in the mortality dataset.

The state transition equation is given by

~Xt = Ψ ~Xt−1 + ~ηt, ~ηt ∼ N3(~0, Q), (3.10)

where

Ψ =


e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3

 , Q =


σ2

1

2ψ1
(1 − e−2ψ1) 0 0

0
σ2

2

2ψ2
(1 − e−2ψ2) 0

0 0
σ2

3

2ψ3
(1 − e−2ψ3)

 .
We calibrate the reference population component using U.S. male population-

level mortality data sourced from the Human Mortality Database (HMD)1. The

HMD publishes population-level deaths and exposure data over the period from

1933 to 2016 for the U.S.

However, we have not been able to obtain time series deaths and exposure data

for U.S annuity holders. Therefore, we construct a synthetic book population which

is assumed to approximate the demographics of a typical retirement income portfo-

lio. The Centers for Disease Control and Prevention (CDC)2 publishes state-level

mortality data over the period 1999 to 2016. To construct a proxy retirement income

portfolio population, we aggregate the exposure and deaths data of the annually-

updated set of states in the highest U.S income quintile. This aggregation is based

1www.mortality.org/
2https://www.cdc.gov/
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on state-level average household income statistics as published by the Small Area

Income and Poverty Estimates Program (SAIPE)3.

Single-year single-age deaths and exposure data for males ages 60 to 84 between

1999 and 2016 (that is, the overlapping period between the two data sources) are

used to �t the joint mortality model.

The average force of mortality for the reference and book populations over the

in-sample period is shown in Figure 3.1. Both populations clearly exhibit mortality

improvement over time, and it appears that the book population tends to have lower

mortality rates relative to the reference population. This is con�rmed by examining

the ratio of the average force of mortality in the book population to that of the

reference population in Figure 3.2 where all values are lower than 1 across all years

and age ranges. Furthermore, the general downward trend in the ratio over time

suggests that faster rates of mortality improvement have been observed in the book

population over the in-sample period.

Figure 3.1: Observed average force of mortality for ages 60 to 84 from 1999 to
2016 in the reference and book populations

(a) Reference population (b) Book population

The joint ATSM is calibrated by �tting the observed average force of mortality

data to the model average force of mortality expressions detailed in Equations (3.7)

and (3.8). The Kalman �ltering maximum likelihood estimation produces the �tted

values as shown in Figure 3.3. It appears that the model has e�ectively captured

the key features of the observed data.

3.1.3 Forecasting and Simulation

Having estimated the model, we then forecast and simulate the future average force

of mortality and the associated survival probabilities over a 20 year time horizon.

The forecasting of survival probabilities is achieved as follows:

3https://www.census.gov/en.html

41

https://www.census.gov/en.html


Chapter 3

Figure 3.2: Book to reference population average force of mortality ratio for ages
60 to 84 from 1999 to 2016

Figure 3.3: Fitted average force of mortality for ages 60 to 84 from 1999 to 2016
in the reference and book populations

(a) Reference population (b) Book population
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1. Forecast the common, reference and book factors CF
x,t, R

F
x,t, B

F
x,t for years

t = 1, 2, ..., 20 from the estimated joint ATSM.

2. Substitute the forecast factors into the average force of mortality functions to

forecast the average force of mortality.

µ̄R,Fx,t (T ) =
1 − e−φ1(T−t)

φ1(T − t)
CF
x,t +

1 − e−φ2(T−t)

φ2(T − t)
RF
x,t −

ARt (t, T )

T − t
, (3.11)

µ̄B,Fx,t (T ) =
1 − e−φ1(T−t)

φ1(T − t)
CF
x,t +

1 − e−φ3(T−t)

φ3(T − t)
BF
x,t −

ABt (t, T )

T − t
. (3.12)

3. Compute the associated survival probability forecasts:

SR,F (x, t, T ) = e(−µ̄R,Fx,t (T )(T−t)), (3.13)

SB,F (x, t, T ) = e(−µ̄B,Fx,t (T )(T−t)). (3.14)

The simulation of survival probabilities follows a similar procedure.

1. Simulate the common, reference and book factors C
[i]
x,t, R

[i]
x,t, B

[i]
x,t for years

t = 1, 2, ..., 20 and for simulation paths i = 1, 2, ..., 5000 from the estimated

joint ATSM.

2. Substitute the simulated factors into the average force of mortality functions

to simulate the average force of mortality.

µ̄
R,[i]
x,t (T ) =

1 − e−φ1(T−t)

φ1(T − t)
C

[i]
x,t +

1 − e−φ2(T−t)

φ2(T − t)
R

[i]
x,t −

ARt (t, T )

T − t
, (3.15)

µ̄
B,[i]
x,t (T ) =

1 − e−φ1(T−t)

φ1(T − t)
C

[i]
x,t +

1 − e−φ3(T−t)

φ3(T − t)
B

[i]
x,t −

ABt (t, T )

T − t
. (3.16)

3. Compute the associated survival probability simulations:

SR,[i](x, t, T ) = e(−µ̄R,[i]x,t (T )(T−t)), (3.17)

SR,[i](x, t, T ) = e(−µ̄B,[i]x,t (T )(T−t)). (3.18)

Indeed, one of the key advantages associated with the a�ne term structure mor-

tality modelling framework is the availability of explicit closed-form solutions for

survival probabilities which can be expressed as a function of the underlying fac-

tors.

Figure 3.4 shows 5,000 simulations for the average force of mortality over a 20

year simulation horizon for both the reference and book populations. The corre-

sponding simulated population survival curves are shown in Figure 3.5. From the

simulated survival curves, two observations are immediately apparent: the average
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Figure 3.4: Simulated average force of mortality for ages 60 to 84 from 2017 to
2036 in the reference and book populations

(a) Reference population (b) Book population

Figure 3.5: Simulated survival curves for ages 60 to 84 from 2017 to 2036 in the
reference and book populations

(a) Reference population (b) Book population
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survival probabilities for all ages improve over time, and the variability in survival

outcomes increases for longer simulation horizons (that is, there is greater uncer-

tainty in survival probabilities for simulations further into the future).

We also present the simulated survival curves for the reference population co-

hort aged 65 in 2017 in Figure 3.6. This plot exhibits the variability of survival

probabilities over time around the central forecast.

Figure 3.6: Simulated survival curves for the reference population cohort aged 65
in 2017 over a 20 year simulation horizon

3.2 M7-M5 Mortality Model

We base the discrete-time multi-population mortality modelling approach on the

framework described by the LBRWG (Haberman et al., 2014; Villegas et al., 2017;

Li et al., 2017). In particular, based on the LBRWG's framework, the M7-M5 model

is adopted. This model allows for inter-age mortality correlations and is appropriate

for basis risk assessments for annuity portfolios that have at least 25,000 lives, 8

years of reliable data, a stable demographic mix and do not have book speci�c

cohort e�ects.
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3.2.1 Model Speci�cation

The M7 model (Cairns et al., 2009) is used for reference population component, that

is

logit(qRx,t) = κRt,1 + (x− x̄)κRt,2 + ((x− x̄)2 − σ2
x)κ

R
t,3 + γRt−x, (3.19)

where

• qRx,t is the year t age x mortality rate in the reference population,

• κRt,1, κ
R
t,2 and κ

R
t,3 are latent-time varying factors corresponding to the mortality

curve's level, slope and curvature respectively,

• γRt−x is the cohort e�ect for those born in year t− x, and

• x̄ and σ2
x denote the sample age mean and sample age variance respectively.

The di�erence between the book and reference population mortality rates is

modelled as

logit(qBx,t) − logit(qRx,t) = κBt,1 + (x− x̄)κBt,2, (3.20)

where

• qBx,t is year t age x mortality rate in the book population,

• κBt,1 and κBt,2 are latent-time varying factors explaining the di�erence in logit

mortality rates, and

• x̄ is the sample age mean.

3.2.2 Model Calibration

The discrete-time M7-M5 model is estimated in two distinct stages. Firstly, single-

year single-age U.S. population-level deaths and exposure data from 1980 to 2016

for males aged 60 to 84 sourced from the HMD are used to estimate the reference

population component of the model (that is the single-population M7 model). The

estimated latent time-varying mortality factors and the cohort e�ect term are shown

in Figure 3.7.

From Figure 3.7, it is apparent that:

• the level of the reference population mortality curve κRt,1 has been steadily

decreasing over time re�ecting declining mortality rates (Figure 3.7a),

• the age e�ects of mortality as represented by the slope κRt,2 and curvature κRt,3
terms seem to have undergone a trend shift since the early 2000's (Figures

3.7b and 3.7c), and
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Figure 3.7: Reference population: estimated factors and cohort e�ect

(a) κRt,1 (b) κRt,2

(c) κRt,3 (d) γRt−x
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• there is a clearly discernible cohort e�ect in the mortality rates (Figure 3.7d).

The book population's mortality dataset is constructed in the same manner as

described in Subsection 3.1.2 for the continuous-time mortality model (that is, the

annually-updated set of states in the highest household income quintile comprise the

book population). Calibration of the mortality rate di�erence between the reference

and book populations is based on single-year single-age deaths and exposure data

for males aged 60 to 84 spanning the years 1999 to 2016 (that is, the overlapping

period between the two populations' data sources).

The estimated mortality di�erence factors are shown in Figure 3.8. In particular,

the negative values of κBt,1 in Figure 3.8a re�ect the lower mortality rates in the

book population relative to the reference population. Additionally, the downward

trend in κBt,1 also suggests that faster rates of mortality improvement have been

observed in the book population over the in-sample period. This is consistent with

the downward trending book to reference population average force of mortality ratio

plotted in Figure 3.2.

Figure 3.8: Book population: estimated factors

(a) κBt,1 (b) κBt,2

3.2.3 Forecasting and Simulation

To generate future mortality rate forecasts and simulations in the reference popula-

tion, the factors κRt,1, κ
R
t,2 and κ

R
t,3 are modelled as a multivariate random walk with

drift


κRt,1

κRt,2

κRt,3

 =


µR1

µR2

µR3

 +


κRt−1,1

κRt−1,2

κRt−1,3

 +


εRt,1

εRt,2

εRt,3

 ,

εRt,1

εRt,2

εRt,3

 ∼ N3(~0,Σ) (3.21)

where
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• µR1 , µ
R
2 , and µ

R
3 are the drift parameters, and

• εRt,1, ε
R
t,2 and ε

R
t,3 are error terms that follow a multivariate normal distribution

with a mean vector ~0 and a covariance matrix Σ.

Under this framework, the variability in future factor values increases with

greater forecast horizons as shown in Figure 3.9, indicating that the variability in

future mortality rates likewise increases for simulations further into the future.

The cohort e�ect γRt−x is modelled as an autoregressive integrated moving average

process, ARIMA (1,1,0).

Figure 3.9: Reference population: estimated, forecast and simulated factors

(a) κRt,1 (b) κRt,2

(c) κRt,3

To generate future mortality rate projections for the book population, the factors

κBt,1 and κ
B
t,2 are modelled as a �rst order vector auto-regression process, VAR(1)

κBt,1
κBt,2

 =

φB1
φB2

 +

φB1,1 φB1,2

φB2,1 φB2,2

κBt−1,1

κBt−1,2

 +

εBt,1
εBt,2

 ,
εBt,1
εBt,2

 ∼ N2(~0,Φ) (3.22)

where
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• φB1 , φ
B
2 , φ

B
1,1, φ

B
1,2, φ

B
2,1 and φ

B
2,2 are model parameters, and

• εBt,1 and ε
B
t,2 are error terms that follow a multivariate normal distribution with

a mean vector ~0 and a covariance matrix Φ. We also assume independence

between these error terms and those of the reference population time series

model.

The forecast mortality rates for the reference population qRx,t and book population

qBx,t for ages 65 to 84 over a 20 year forecast horizon are plotted in Figure 3.10. It is

apparent from these plots that the model forecasts improving mortality rates over

time in both populations.

Figure 3.10: Forecast mortality rates for ages 65 to 84 from 2017 to 2036 for the
reference and book populations

(a) Reference population (b) Book population

In this chapter, we have detailed the speci�cation, estimation, forecasting and

simulation of both a discrete-time and a continuous-time multi-population mortality

model. The outputs from these models facilitate the construction of the value-based

longevity index and the assessment of basis risk when hedging retirement income

portfolios using �nancial instruments that reference the constructed index.
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Interest Rate Modelling Frameworks

In this chapter, we develop two separate interest rate models: a nominal interest rate

model (N) and a real interest rate model (R). The discounting of future cash�ows

is required both to construct the value-based longevity index as well as to assess

the basis risk exposure. In particular, we adopt the a�ne dynamic Nelson Siegel

(DNS) interest rate model with independent factors, as developed by Diebold and

Li (2006). We assume that the interest rate modelling process is independent of

mortality and longevity trends � a common assumption in the literature (Bi�s, 2005;

Xu et al., 2017). Section 4.1 presents the estimation results and future simulations

and forecasts for the nominal interest rate model, while Section 4.2 details the

development of the real interest rate model.

4.1 Nominal Interest Rate Model

4.1.1 Model Speci�cation

The nominal interest rate model incorporates three latent time-varying factors:

• LNt : a level factor for the nominal yield curve,

• SNt : a slope factor for the nominal yield curve, and

• CN
t : a curvature factor for the nominal yield curve.

The risk neutral Q dynamics of the factors are
dLNt

dSNt

dCN
t

 = −


0 0 0

0 λN −λN

0 0 −λN



LNt

SNt

CN
t

 dt+


σN1 0 0

0 σN2 0

0 0 σN3



dWQ,LN

t

dWQ,SN

t

dWQ,CN

t

 , (4.1)

where

• λN is the Nelson Siegel parameter,
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• σN1 , σ
N
2 and σN3 are the factor volatility parameters, and

• WQ,LN

t , WQ,SN

t and WQ,CN

t are Wiener processes under the risk neutral mea-

sure.

Invoking the Girsanov theorem (Girsanov, 1960), the real-world measure P factor

dynamics are shown to be
dLNt

dSNt

dCN
t

 =


kN1 0 0

0 kN2 0

0 0 kN3


[
θ1,N

θ2,N

θ3,N

−


LNt

SNt

CN
t


]
dt+


σN1 0 0

0 σN2 0

0 0 σN3



dW P,LN

t

dW P,SN

t

dW P,CN

t

 ,
(4.2)

where

• kN1 , k
N
2 , k

N
3 , θ

N
1 , θ

N
2 and θN3 are parameters, and

• W P,LN

t ,W P,SN

t andW P,CN

t are Wiener processes under the real-world measure.

Given these model dynamics, the zero coupon nominal bond yield at time t with τ

months maturity is given by the yield function

yNt (τ) = LNt + SNt (
1 − e−λ

N τ

λNτ
) + CN

t (
1 − e−λ

N τ

λNτ
− e−λ

N τ ). (4.3)

4.1.2 Model Calibration

To calibrate the nominal DNS interest rate model, we use monthly nominal yield

observations as published by the U.S. Department of the Treasury1. In particular,

we �t the period from October 2006 to May 2018 because this provides complete

data for the following eleven maturity terms: 1 month, 3 months, 6 months, 1 year,

2 years, 3 years, 5 years, 7 years, 10 years, 20 years and 30 years.

The empirical data is presented in Figure 4.1. In general, the yield curve appears

to be upward sloping with respect to maturity over the in-sample period. There

also appears to be higher volatility in the short-term interest rates relative to the

long-term rates. The summary statistics for the empirical nominal yield rates are

provided in Table 4.1.

As with the joint ATSM, the DNS interest rate model can be expressed in state

space form in terms of a measurement equation and a state transition equation.

Therefore, it can be estimated using the Kalman �lter (Kalman, 1960). The mea-

surement equation is

~yNt = BN ~XN
t + ~εNt , ~εNt ∼ Nn(~0, HN), (4.4)

1https://home.treasury.gov/
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Figure 4.1: Observed nominal bond yields from October 2006 to May 2018

Figure 4.2: Fitted nominal bond yields from October 2006 to May 2018

53



Chapter 4

Table 4.1: Nominal interest rate summary statistics

Maturity (months) Mean Standard Deviation Min Max

1 0.98 1.63 0.00 5.24

3 1.04 1.65 0.00 5.16

6 1.14 1.67 0.03 5.24

12 1.23 1.61 0.09 5.21

24 1.43 1.47 0.20 5.16

36 1.66 1.37 0.30 5.13

60 2.14 1.21 0.59 5.10

84 2.54 1.09 0.98 5.11

120 2.91 1.00 1.46 5.15

240 3.46 0.97 1.78 5.35

360 3.63 0.83 2.18 5.21

where

~yNt =


yNt (τ1)

...

yNt (τn)

 , BN =


1 1−e−λNτ1

λN τ1
1−e−λNτ1
λN τ1

− e−λ
N τ1

...
...

...

1 1−e−λNτn
λN τn

1−e−λNτn
λN τn

− e−λ
N τn

 , ~XN
t =


LNt

SNt

CN
t

 ,

~εNt =


εNt (τ1)

...

εNt (τn)

 ,
HN is the (diagonal) covariance matrix of the normal error terms and n = 11

observed maturities.

The state transition equation is given by

[ ~XN
t − ~θN ] = κN [ ~XN

t−1 − ~θN ] − ~ηt, ~ηt ∼ N3(~0, QN), (4.5)

where

~θN =


θNL

θNS

θNC

 , κN =


e−κ

N
1 ∆t 0 0

0 e−κ
N
2 ∆t 0

0 0 e−κ
N
3 ∆t

 ,

QN =


σ2

1(1−e−2κN1 ∆t)

2κN1
0 0

0
σ2

2(1−e−2κN2 ∆t)

2κN2
0

0 0
σ2

3(1−e−2κN3 ∆t)

2κN3


and ∆t = 1

12
(for monthly data).

We apply the Kalman �ltering technique to the observed nominal bond yield

data and obtain an estimated Nelson Siegel parameter of λN = 0.042. The �tted
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yields are presented in Figure 4.2 and appear to broadly capture the key features of

the observed interest rate data.

The mean and standard deviations of the model residuals by maturity are pro-

vided in Table 4.2. It appears that the model exhibits a better �t to the observed

data for maturities beyond 3 months. Given that our basis risk analysis is based on

maturities ranging from 1 year to 20 years, the model gives a satisfactory �tting per-

formance over the most relevant maturities. Figure 4.3 compares the observed and

empirical mean yield curves and con�rms the satisfactory overall �t of the estimated

interest rate model.

Table 4.2: Nominal interest rates: residual mean and standard deviation by ma-
turity

Maturity (months) Mean (bps) Standard Deviation (bps)

1 -13.3333 6.6372

3 -7.5352 5.9266

6 0.3016 0.7937

12 2.3771 6.6486

24 0.9736 5.7837

36 -1.2565 2.5624

60 -0.1157 5.2012

84 2.1626 4.2657

120 -0.0610 0.8739

240 0.8163 4.0693

360 -1.0173 3.2993

4.1.3 Forecasting and Simulation

Having estimated the model, we then forecast and simulate the future term structure

of interest rates and the associated zero coupon bond prices over a 20 year time

horizon. The forecasting of zero coupon bond prices is achieved as follows:

1. Forecast the level, slope and curvature factors LFt , S
F
t , C

F
t for years t =

1, 2, ..., 20 from the estimated DNS nominal interest rate model.

2. Substitute the forecast factors into the yield function to forecast the term

structure of interest rates.

yFt (τ) = LFt + SFt (
1 − e−λτ

λτ
) + CF

t (
1 − e−λτ

λτ
− e−λτ ). (4.6)

3. Compute the associated zero coupon bond price forecasts:

P F (t, T ) = e(−yFt (T−t)(T−t)). (4.7)
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Figure 4.3: Observed and �tted nominal mean yields, October 2006 to May 2018

The simulation of zero coupon bond prices follows a similar procedure.

1. Simulate the level, slope and curvature factors L
[i]
t , S

[i]
t , C

[i]
t for years t =

1, 2, ..., 20 and for simulation paths i = 1, 2, ..., 5000 from the estimated DNS

nominal interest rate model.

2. Substitute the simulated factors into the yield function to simulate the term

structure of interest rates.

y
[i]
t (τ) = L

[i]
t + S

[i]
t (

1 − e−λτ

λτ
) + C

[i]
t (

1 − e−λτ

λτ
− e−λτ ). (4.8)

3. Compute the associated zero coupon bond price simulations:

P [i](t, T ) = e(−y[i]
t (T−t)(T−t)). (4.9)

Indeed, one of the key advantages associated with the a�ne term structure of

interest rate modelling framework is the availability of explicit closed-form solutions

to future yield rates and zero coupon bond prices which can be expressed as a

function of the underlying factors.

Figure 4.4 shows the simulated future nominal bond prices over the 20 year

simulation horizon for maturities of up to 20 years. From this surface plot, one of

the key limitations of modelling nominal interest rates using the dynamic Nelson
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Siegel model becomes apparent: there is a small probability that certain simulations

could produce negative nominal interest rates and hence the zero coupon prices

may not be monotonically decreasing with respect to the term to maturity for all

simulation paths. However, as is evident from Figure 4.4, this probability is, in

practice, quite small.

Figure 4.4: Simulated nominal bond prices over a 20 year simulation horizon

4.2 Real Interest Rate Model

The modelling of real interest rates broadly re�ects the nominal interest rate mod-

elling framework described in Section 4.1.

4.2.1 Model Speci�cation

The real interest rate model incorporates three latent time-varying factors:

• LRt : a level factor for the real yield curve,

• SRt : a slope factor for the real yield curve, and

• CR
t : a curvature factor for the real yield curve.
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The risk neutral Q dynamics of the factors are
dLRt

dSRt

dCR
t

 = −


0 0 0

0 λR −λR

0 0 −λR



LRt

SRt

CR
t

 dt+


σR1 0 0

0 σR2 0

0 0 σR3



dWQ,LR

t

dWQ,SR

t

dWQ,CR

t

 , (4.10)

where

• λR is the Nelson Siegel parameter,

• σR1 , σ
R
2 and σR3 are the factor volatility parameters, and

• WQ,LR

t , WQ,SR

t and WQ,CR

t are Wiener processes under the risk neutral mea-

sure.

Invoking the Girsanov theorem (Girsanov, 1960), the real-world measure P factor

dynamics are shown to be
dLRt

dSRt

dCR
t

 =


kR1 0 0

0 kR2 0

0 0 kR3


[
θ1,R

θ2,R

θ3,R

−


LRt

SRt

CR
t


]
dt+


σR1 0 0

0 σR2 0

0 0 σR3



dW P,LR

t

dW P,SR

t

dW P,CR

t

 ,
(4.11)

where

• kR1 , k
R
2 , k

R
3 , θ

R
1 , θ

R
2 and θR3 are parameters, and

• W P,LR

t , W P,SR

t and W P,CR

t are Wiener processes under the real-world measure.

Given these model dynamics, the zero coupon real bond yield at time t with τ

months maturity is given by the yield function

yRt (τ) = LRt + SRt (
1 − e−λ

Rτ

λRτ
) + CR

t (
1 − e−λ

Rτ

λRτ
− e−λ

Rτ ). (4.12)

4.2.2 Model Calibration

To calibrate the real DNS interest rate model, we use monthly real yield observations

as published by the U.S. Department of the Treasury2. In particular, we �t the

period from February 2010 to May 2018 because this provides complete data for the

following �ve maturity terms: 5 years, 7 years, 10 years, 20 years and 30 years.

The empirical data is shown in Figure 4.5. Similarly to the observed nominal

interest rate data, the real yield curve also appears to be upward sloping with

respect to maturity over the in-sample period. Again, there appears to be higher

volatility in the short-term interest rates relative to the long-term rates. Unlike the

nominal interest rates, we observe negative bond yields at various di�erent time
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Figure 4.5: Observed real bond yields from February 2010 to May 2018

Figure 4.6: Fitted real bond yields from February 2010 to May 2018
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Table 4.3: Real interest rate summary statistics

Maturity (months) Mean Standard Deviation Min Max

60 -0.24 0.57 -1.47 0.72

84 0.08 0.54 -1.20 1.23

120 0.34 0.50 -0.79 1.60

240 0.81 0.46 -0.09 1.99

360 1.05 0.43 0.32 2.16

points, particularly in the 5 year maturity range. The summary statistics for the

empirical real yield rates are provided in Table 4.3.

Once more, the Kalman �lter (Kalman, 1960) is used to estimate the model.

The measurement equation is

~yRt = BR ~XR
t + ~εRt , ~εRt ∼ Nn(~0, HR), (4.13)

where

~yRt =


yRt (τ1)

...

yRt (τn)

 , BR =


1 1−e−λRτ1

λRτ1
1−e−λRτ1
λRτ1

− e−λ
Rτ1

...
...

...

1 1−e−λRτn
λRτn

1−e−λRτn
λRτn

− e−λ
Rτn

 , ~XR
t =


LRt

SRt

CR
t

 ,

~εRt =


εRt (τ1)

...

εRt (τn)

 ,
HN is the (diagonal) covariance matrix of the normal error terms and n = 5 observed

maturities.

The state transition equation is given by

[ ~XR
t − ~θR] = κR[ ~XR

t−1 − ~θR] − ~ηt, ~ηt ∼ N3(~0, QR), (4.14)

where

~θR =


θRL

θRS

θRC

 , κR =


e−κ

R
1 ∆t 0 0

0 e−κ
R
2 ∆t 0

0 0 e−κ
R
3 ∆t

 ,

QR =


σ2

1(1−e−2κR1 ∆t)

2κR1
0 0

0
σ2

2(1−e−2κR2 ∆t)

2κR2
0

0 0
σ2

3(1−e−2κR3 ∆t)

2κR3


2https://home.treasury.gov/
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and ∆t = 1
12

(for monthly data).

We apply the Kalman �ltering technique to the observed real bond yield data

and obtain an estimated Nelson Siegel parameter of λR = 0.017. The �tted yields

are presented in Figure 4.6 and appear to broadly capture the key features of the

observed interest rate data.

The mean and standard deviations of the model residuals by maturity are pro-

vided in Table 4.4. It appears that the model exhibits a relatively good �t for all

observed maturities, as indicated by relatively low residual means and standard de-

viations. Figure 4.7 compares the observed and empirical mean yield curves and

con�rms the satisfactory overall �t of the estimated interest rate model.

Table 4.4: Real interest rates: residual mean and standard deviation by maturity

Maturity (months) Mean (bps) Standard Deviation (bps)

60 -2.4091 5.6250

84 3.1164 6.7812

120 0.0000 0.0000

240 -2.3681 3.3248

360 0.3077 0.8901

Figure 4.7: Observed and �tted real mean yields, February 2010 to May 2018
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4.2.3 Forecasting and Simulation

Having estimated the model, we then forecast and simulate the future term structure

of interest rates and the associated zero coupon bond prices over a 20 year time

horizon. The forecasting and simulation of bond yields and prices follows the same

approach as described in Subsection 4.1.3.

Figure 4.8 shows the simulated future real bond prices over the 20 year simulation

horizon for maturities of up to 20 years. Unlike the nominal interest rate case,

negative bond yields are acceptable when modelling real interest rates.

Figure 4.8: Simulated real bond prices over a 20 year simulation horizon

The simulated and forecasted nominal and real zero coupon bond prices can now

be combined with the mortality rate projections developed in Chapter 3 in order to

construct the value-based longevity index, as well as to conduct basis risk analyses

for retirement income portfolios hedged using the constructed index.
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Value-Based Longevity Index and

Longevity Risk Hedging

In this chapter, we draw on the simulated and forecast outcomes from the mortality

and interest rate modelling frameworks described in Chapters 3 and 4 respectively

in order to construct the value-based longevity index and assess its e�ectiveness

when hedging the risks associated with retirement income portfolios. Section 5.1

details the de�nition and construction of the index. In Section 5.2, we design the

hedging strategy by calibrating the optimal notional swap weighting. It is critical

to compare the hedge e�ectiveness associated with the value-based longevity index

against that of alternative longevity indices to identify the key drivers of risk in

retirement income portfolios � these comparison indices are outlined in the Section

5.3. Section 5.4 presents several basis risk measures to quantify the e�ectiveness

of di�erent hedging indices. Finally, in Section 5.5, we conduct a range of sensi-

tivity analyses to determine the signi�cance of various modelling assumptions and

experimental design settings.

5.1 Index Construction

We de�ne the value-based longevity index Ix,t as the expected present value of a unit

of longevity and in�ation-indexed income paid annually in arrears to a cohort aged

x at initial time t. The index re�ects only the expected survival rates, interest rates

and in�ation. As referenced in Subsection 2.4, BlackRock's CoRI is not a suitable

index for longevity hedging purposes because it accounts for the market price of

longevity risk as re�ected in the current pricing of retirement income products by

providers. Therefore, it is not perceived by market participants as an independent,

objective representation of longevity outcomes. To overcome this issue, our index

does not incorporate any longevity risk premium. Instead, it is up to �nancial
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markets to determine an appropriate price for longevity risk through the setting

of forward prices for traded index-linked instruments. Furthermore, in accordance

with Chang and Sherris (2018), our index will not account for any expense loading

or pro�t margin.

The value of the index is

Ix,t =
ω−x∑
i=1

SR(x, t, t+ i) × PR(t, t+ i), (5.1)

where

• ω denotes the age of �nal payment (assumed to be 85 in our analysis),

• SR(x, t, t + i) denotes the forecast i year survival probability of the reference

population, and

• PR(t, t+i) is the forecast time t price of an in�ation-indexed zero coupon bond

making a single unit payment at time t + i as computed from the real DNS

interest rate model.

Figure 5.1 shows the initial (that is, time t = 0) index values for ages 65 to

84, drawing on survival probabilities generated by the continuous-time mortality

model. The index value for age 65 is 12.18. That is, for each 65 year old male who

is promised $1 of in�ation-indexed income per year upon survival from ages 66 to

85, a retirement income provider requires $12.18 worth of investments today.

It is also possible to forecast and simulate future index values over time based

on mortality and interest rate forecasts and simulations. For example, the forward

index values for the cohort initially aged 65 (at time t = 0) is represented by the

black curve in Figure 5.2. This shows the expected path of the value-based longevity

index over the payment period for this particular reference population cohort. A

smooth and stable decline is observed.

In reality, mortality, interest rate and in�ation factors will di�er over time from

initial forecasts and hence the evolution of the index will not exactly track its ex-

pected pathway. Figure 5.2 also shows 5,000 simulations of the index value for the

cohort initially aged 65. We see that although the forward index values remain

broadly in the middle of the distribution of simulated paths, there is material vari-

ability around the expected value over time. The volatility around the forward

values declines over time until the �nal age is reached.
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Figure 5.1: Initial index value by age (joint ATSM)

Figure 5.2: Forward and simulated index values, (joint ATSM)
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5.2 Hedging Strategy

Having constructed the value-based longevity index, this section now describes the

design of an optimal hedging strategy by retirement income provider using a stan-

dardised swap instrument which references the value-based longevity index.

For our hedging analysis, we assume that a retirement income provider is aiming

to hedge the risks associated with a closed annuity pool of 65 year old males who

are promised $1 of in�ation-indexed income per year upon survival from ages 66 to

85. That is, the fund consists of a single cohort and no subsequent additions to the

scheme are made.

The random present value of the retirement income portfolio liability is

PV (Unhedged Portfolio) =
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i), (5.2)

where

• x = 65 and ω = 85.

• the number of surviving annuitants lBx+i,t+i (aged x + i at time t + i) is de-

pendent on the simulated book population mortality dynamics generated by

the mortality models. However, we also account for sampling basis risk by

allowing the number of deaths in any given year to follow a binomial distribu-

tion DB
x,t ∼ Bin(EB

x,t, q
B
x,t) (Haberman et al., 2014) where the exposure EB

x,t is

given by the number of surviving annuitants in year t and the mortality rate

parameter qBx,t is simulated from the mortality model.

• PR(t, t+ i) is the time t price of an in�ation-indexed zero coupon bond making

a single unit payment at time t + i as computed from the real interest rate

model. PR(t, t+ i) is computed from a single simulation path.

In Figure 5.3, we plot a histogram showing 5,000 simulations of the liability

present value for a portfolio with an initial size of 100,000 lives. A degree of positive

skewness is apparent, with the simulated distribution exhibiting a heavier right tail.

Assume that an annually-settled index swap trades in the longevity risk transfer

market. For a given age x at initial time t, the swap references the constructed value-

based longevity index Ix,t; at time t+ i, the �xed leg pays the i year forward index

value Ifx+i,t+i while the �oating leg pays the realised index value Ix+i,t+i. As index

values are based on forward-looking cash�ows, the �nal swap payment is made when

the initial cohort reaches age ω − 1; not at age ω when the �nal annuity payments

are made to surviving policyholders. That is, the swap has an initial maturity term

of ω − x− 1. Therefore, the longevity, interest rate and in�ation risk over the �nal

year of the liability remain unhedged. This mismatch between liability and hedge

cash�ows constitutes an example of structuring basis risk.
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Figure 5.3: Liability present value histogram, (joint ATSM, 100,000 lives)

A retirement income provider seeking to hedge their risk exposure would be the

�xed leg payer to this index swap. From their perspective, the random present value

of the swap instrument is

PV (Index Swap) =
ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i) × PN(t, t+ i), (5.3)

where

• x = 65 and ω = 85.

• Ifx+i,t+i denotes the forward index value. It is computed from central forecasts.

• Ix+i,t+i denotes the realised index value. Its computation entails two distinct

steps. The initial phase involves the simulation of a single mortality intensity

and interest rate path up until time t+ i. In the second stage, conditional on

the mortality and interest rate realisations in the �rst phase, central forecasts

from time t+i onwards are computed to derive the realised index value Ix+i,t+i.

• PN(t, t+ i) is the time t price of a nominal zero coupon bond making a single

unit payment at time t+ i. PN(t, t+ i) is simulated from the nominal interest

rate model.

The simulated swap payment paths received by the �xed leg payer over the 19

year swap term is shown in Figure 5.4. Although individual swap payment paths can
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be volatile, the average swap payment, as depicted by the black line, remains very

close to zero. This re�ects the fact that forward index values are simply assumed to

follow the expected values with no risk or pro�t premiums priced in to the forward

values. As re�ected in Figure 5.2, the variability of swap payments is highest in the

early years of the hedge and steadily decreases over the term of the swap.

Figure 5.4: Simulated swap payments (joint ATSM)

When a retirement income provider hedges their exposure using the swap instru-

ment, they e�ectively combine the hedging instrument with their exposed portfolio.

Therefore, the random present value of the retirement income provider's hedged

portfolio is given by the sum of the the present values of the two components.

PV (Hedged Portfolio) = PV (Unhedged Portfolio) + PV (Index Swap)

=
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i) + w0

ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i) × PN(t, t+ i), (5.4)

where w0 refers to the notional amount of the longevity swap. Following the sug-

gested framework in Li et al. (2017), we estimate w0 using numerical optimisation

with an objective to minimise the variance of the hedged portfolio's present value,

obtaining a solution of w0 = 0.3268. Since the analysis is based on a static hedg-

ing framework, the swap weight is calibrated at the outset and thereafter does not

require periodic rebalancing or recalibration in response to evolving market condi-

tions or mortality experience. In contrast, under a dynamic hedging regime, w0 is
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recalibrated each time the portfolio is rebalanced. Ngai and Sherris (2011) note that

static hedging is more appropriate and practical given the lack of liquidity in the

longevity risk transfer market.

5.3 Comparison Against Other Longevity Indices

Inspired by Chang and Sherris (2018), we compare the hedge outcomes associated

with the value-based longevity index to two other longevity indices which we also

construct. The purpose of these comparisons is to attribute the risks associated with

retirement income portfolios into longevity risk, interest rate risk and in�ation risk

components.

5.3.1 Survival Index

We de�ne the index I0
x,t as the expected survival probability of a cohort aged x in

year t. The survival index value is

I0
x,t =

ω−x∑
i=1

SR(x, t, t+ i), (5.5)

where

• ω denotes the age of �nal payment, and

• SR(x, t, t + i) denotes the forecast i year survival probability of the reference

population.

5.3.2 Value-Based Longevity Index without In�ation-Indexation

We de�ne the index I1
x,t as the expected present value of a unit of longevity-indexed

income paid annually in arrears to a cohort aged x in year t. The index value is

I1
x,t =

ω−x∑
i=1

SR(x, t, t+ i) × PN(t, t+ i), (5.6)

where

• ω denotes the age of �nal payment,

• SR(x, t, t + i) denotes the forecast i year survival probability of the reference

population.

• PN(t, t+ i) is the forecast time t price of a nominal zero coupon bond making

a single unit payment at time t+ i as computed from the nominal interest rate

model.
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The risk coverage of the various constructed longevity indices is summarised in

Table 5.1 below.

Table 5.1: Risk coverage of di�erent longevity indices

Index Longevity Risk Interest Rate Risk In�ation Risk

I0
x,t X

I1
x,t X X

Ix,t X X X

Based on this table, the attribution of risk can be outlined as follows:

• The risk reduction achieved by hedging the retirement income portfolio using

I0
x,t as the reference index represents the impact of longevity risk.

• The additional risk reduction achieved by hedging the retirement income port-

folio using I1
x,t as the reference index (relative to a hedge referencing the index

I0
x,t) represents the impact of interest rate risk.

• The additional risk reduction achieved by hedging the retirement income port-

folio using Ix,t as the reference index (relative to a hedge referencing the index

I1
x,t) represents the impact of in�ation risk.

5.4 Basis Risk Analysis

Having calibrated the longevity swap instrument following the framework described

in Section 5.2, it is critical to assess the e�ectiveness of the hedging strategy. We

initially adopt graphical risk reduction representations as visualisation can be a very

e�cient way to communicate the e�ectiveness of hedging strategies to a variety of

di�erent stakeholders. Following Coughlan (2009), we plot the simulated liability

distributions to obtain a preliminary overview of the degree of risk reduction achieved

by the index-based hedge, as well as the other comparison indices described in

Section 5.3.

In Figure 5.5, the blue histograms represent the present value of the unhedged

portfolio liability outcomes, while the overlaid orange histograms represent the net

present value of the hedged liability outcomes (that is, the sum of the unhedged

liability outcomes and the weighted index swap outcomes). These diagrams repre-

sent annuity pools with 100,000 initial members. For all three indices, we observe

a reduction in the volatility of liability valuations once the index swaps have been

taken into account. However, it is also apparent that when the liability is hedged
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with reference to the in�ation-indexed value-based longevity index Ix,t (Figure 5.5c),

the hedged distribution becomes materially narrower relative to the two alternate

longevity indices.

Figure 5.5: Hedged and unhedged liability present value distributions by hedging
index (joint ATSM, 100,000 lives)

(a) Survival index I0
x,t (b) Nominal-linked value index I1

x,t

(c) In�ation-linked value index Ix,t

We also present a box and whisker plot of the simulated liability present value

outcomes in Figure 5.6. In all four simulated distributions, the median outcome as

indicated by the central mark is relatively similar. However, once we examine the

25th and 75th percentiles of the liability distribution (represented by the lower and

upper edges of the box respectively), we note that variability is materially reduced

when comparing the in�ation-linked hedge against the unhedged liability as well as

the two other alternate hedging indices. Furthermore, the outliers associated with

the simulated net liability outcomes (indicated by the red crosses) are much less

extreme in the case of the in�ation-linked value-based longevity index, con�rming

the observations inferred from the histograms in Figure 5.5.

However, although graphical representations can provide an adequate under-

standing of hedging e�ciency, in order to systematically evaluate the hedge e�ec-

tiveness of the in�ation-indexed value-based longevity index relative to the other

longevity indices, quantitative risk measures must also be examined. Therefore,

we investigate the summary statistics of the simulated liability present value dis-

tributions, as presented in Table 5.2. From these �gures, it is evident that the
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Figure 5.6: Hedged and unhedged liability present value box and whisker plots by
hedging index (joint ATSM, 100,000 lives)

minimum and maximum outcomes are much less extreme and the variance of the

liability present value distribution is materially reduced by hedging. Indeed, given

the approximate normality of the distributions observed in Figure 5.5, we conduct

an F-test for equality of two variances to formally examine whether the variance of

the liability present value is reduced when hedged against the in�ation-linked value

index relative to the two other indices. Against a one-sided alternative, we are able

to reject the null hypothesis at all reasonable signi�cance levels (p-value < 0.0001)

and conclude that the variance of the hedged liability tied to the in�ation-linked

value index is lower than that of both other indices at a statistically signi�cant

level.

Table 5.2: Summary statistics: hedged and unhedged liability present value out-
comes by hedging index (joint ATSM, 100,000 lives)

Hedging Index Minimum Maximum Mean Variance

Unhedged 9.10 17.25 12.59 1.23

Survival index I0
x,t 9.80 14.73 12.44 0.46

Nominal-linked value index I1
x,t 10.36 14.84 12.44 0.33

In�ation-linked value index Ix,t 10.87 14.18 12.44 0.20

The Longevity Risk Reduction (LRR) metric is also well established in the liter-
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ature as a robust indicator of hedging performance for longevity-linked instruments

(see, for example, Coughlan et al., 2011; Li et al., 2017). Note that some authors

refer to the LRR metric using alternate terms such as �hedge e�ciency� (Chang and

Sherris, 2018). Following Cairns et al. (2014), we de�ne our LRR measure based on

the percentage reduction in variance of the liability present value:

Longevity Risk Reduction = (1 − var(Hedged Portfolio)

var(Unhedged Portfolio)
) × 100%, (5.7)

where var(Unhedged Portfolio) and var(Hedged Portfolio) refer to the variance

of the retirement income provider's net position before and after the hedge has been

applied, respectively.

In Figure 5.7, we show the LRR attained by the various indices across three

di�erent book sizes. It is apparent that all indices are ine�ective at book sizes of

1,000 policyholders due to sampling basis risk. Once the portfolio size increases

to 10,000 and eventually 100,000 policyholders, all three indices exhibit a much

improved hedging performance. However, the LRR associated with the in�ation-

linked value-based longevity index remains materially superior to the other indices

at all book sizes, with the magnitude of the out-performance found to be higher

in larger portfolios. However, it should be noted that even in a particularly large

portfolio of 100,000 annuitants, the in�ation-indexed value-based longevity index

does not provide a perfect hedge (LRR of 82.47%). Demographic basis risk remains

a factor, while the structuring basis risk associated with the �nal year of the liability

remaining unhedged also impacts the outcome.

The di�erences between the hedging outcomes associated with the three indices

also provide an indication as to the relative impact of the three identi�ed risk sources.

For example, the additional risk reduction attained using the in�ation-linked value

index as opposed to the value index linked to nominal interest rates is 10.3% in a

book of 100,000 policyholders. Therefore, when hedging annuity exposures where

payments are tied to price levels, an index that re�ects the in�ation-linked nature of

these obligations provides a material advantage over indices that fail to account for

in�ation. Similarly, we observe a di�erence of over 22% between the in�ation-linked

value index and the standard survival rate index, suggesting that retirement income

providers who pursue survivor swaps when hedging in�ation-linked liabilities would

experience signi�cant basis risk due to the inability of survival indices to account

for in�ation or interest rate risk.
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Figure 5.7: Longevity risk reduction: % reduction in variance (joint ATSM)

5.5 Sensitivity Analysis

It is critical to assess the signi�cance of various modelling assumptions and experi-

mental design settings. Following the template of Li et al. (2017), robustness checks

are performed on various aspects of the modelling framework and methodological

process to examine the potential impact of di�erent assumption settings on hedge

outcomes. In each of the following cases, one key experimental variable is changed,

while all other factors and settings are held constant.

5.5.1 Book Size

It is well established in the literature (see, for example, Villegas et al., 2017; Li et al.,

2017; Chang and Sherris, 2018) that the e�ectiveness of index-based longevity hedges

are greater for larger book sizes. Indeed, this is also evidenced in our analysis. It

occurs because in larger retirement income portfolios, sampling basis risk lacks the

su�cient leverage to materially impact aggregate hedge outcomes. To more closely

examine the relationship between portfolio size and longevity risk reduction, we test

our hedging framework utilising the in�ation-linked value-based longevity index in

portfolio sizes of 1,000, 5,000, 10,000, 25,000, 50,000 and 100,000 lives. The LRR

outcomes attained at these book sizes are plotted in Figure 5.8.

It appears that while hedge e�ciency improves at a signi�cant rate up until about
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Figure 5.8: Hedge e�ciency by book size (joint ATSM)

10,000 lives, the impact of sampling basis risk on portfolio hedging outcomes be-

comes progressively smaller for larger pension pools, with minimal marginal bene�ts

extracted when increasing the book size beyond 50,000 lives.

5.5.2 Discrete-Time Mortality Model

In order to evaluate the potential impact of model risk on hedging outcomes, we

repeat our analysis using the simulation and forecasting results generated by the

discrete-time M7-M5 mortality model described in Section 3.2. This facilitates the

comparison of the two mortality modelling frameworks and bridges the literature gap

between continuous-time and discrete-time multi-population mortality modelling

techniques. As in the previously presented example, we assume that a retirement

income provider is aiming to hedge the risks associated with a pool of 65 year old

males who are promised $1 of in�ation-indexed income per year upon survival from

ages 66 to 85. In this analysis, the simulated interest rate paths are controlled from

the results presented for the continuous-time analysis.

The plot of forward and simulated index values are provided in Figure 5.9. We

note consistent features to the corresponding plot for the joint ATSM in Figure 5.2:

• the forward/expected index values (represented by the black curve) declines

in a smooth, predictable manner and remains towards the centre of the distri-
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bution of simulated index values, and

• the simulated index values show a material degree of variation about the for-

ward values, with the variation highest in the early years and gradually de-

clining over time.

Figure 5.9: Forward and simulated index values, (M7-M5 model)

The graph of simulated net swap payments made by the �xed leg payer is pre-

sented in Figure 5.10. As with the joint ATSM, the average swap payment (the

black line) remains e�ectively zero throughout the term of the swap, re�ecting the

setting of forward values to the expected index values.

The histogram showing 5,000 simulated liability present value outcomes for a

portfolio of 100,000 initial policyholders is presented in Figure 5.11. As was the case

for the continuous-time joint ATSM, a degree of positive skewness is evident in the

distribution. Figure 5.12 indicates the liability present value histograms once they

have been hedged to the various longevity indices, while Figure 5.13 presents the

associated box and whisker plots. From these graphical representations, in addition

to the LRR metrics presented in Figure 5.14 and the summary statistics detailed

in Table 5.3, we do not observe a material di�erence between the continuous and

discrete-time mortality modelling frameworks in the analysis of hedge e�ectiveness.

For example, for the in�ation-linked value-based longevity index, the observed LRR
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Figure 5.10: Simulated swap payments (M7-M5 model)

metric is 83.42% for a portfolio size of 100,000 with an associated swap weight

parameter of w0 = 0.3307 � highly comparable to the corresponding values of 82.47%

and w0 = 0.3268 from the joint ATSM.

Table 5.3: Summary statistics: hedged and unhedged liability present value out-
comes by hedging index (M7-M5 model, 100,000 lives)

Hedging Index Minimum Maximum Mean Variance

Unhedged 9.13 17.79 12.68 1.26

Survival index I0
x,t 9.87 14.94 12.51 0.50

Nominal-linked value index I1
x,t 10.21 14.74 12.54 0.38

In�ation-linked value index Ix,t 10.72 14.52 12.52 0.23

Having estimated both a continuous-time and a discrete-time mortality modelling

framework, we are also able to examine the stability of hedging outcomes when

the alternate model is used to calibrate the notional swap parameter w0. That is,

we can estimate the swap weight using the discrete-time mortality model and use

this weighting to compute the hedging outcomes associated with the value-based

longevity index under the continuous-time mortality framework (and vice versa).

We �nd that the sensitivity of risk reduction outcomes to this variation in hedge

calibration method is very limited. As shown in Table 5.4, for the continuous-time
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Figure 5.11: Liability present value distributions histogram, (M7-M5 model,
100,000 lives)

Figure 5.12: Hedged and unhedged liability present value distributions by hedging
index (M7-M5 model, 100,000 lives)

(a) Survival index I0
x,t (b) Nominal-linked value index I1

x,t

(c) In�ation-linked value index Ix,t

and discrete-time mortality models, the reduction in hedging e�ciency is minimal

when the other model is used to compute w0 � a result that is not unexpected
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Figure 5.13: Hedged and unhedged liability present value box and whisker plots
by hedging index (M7-M5 model, 100,000 lives)

given the similar swap weight parameters obtained by the two di�erent mortality

modelling frameworks.

Table 5.4: Model hedge e�ective comparison (% reduction in variance, 100,000
lives)

Joint ATSM M7-M5 model

w0 calibrated by same model 82.47% 83.42%

w0 calibrated by alternate model 82.13% 83.21%

5.5.3 Extending to Age 90

The book population mortality dataset is derived from state-level statistics obtained

from the CDC. One of the limitations of this approach is that the CDC's deaths

and exposure data does not extend beyond age 85, meaning that the retirement

income portfolios analysed in the previous sections represent pools of term annuities

where the �nal payment occurs at age 85 as we lack the requisite data at older

ages to reliably train the mortality models. However, it is at these older ages where

longevity risk is most signi�cant as the future improvement in mortality rates is

more unpredictable.
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Figure 5.14: Longevity risk reduction: % reduction in variance (M7-M5 model)

Therefore it is informative to extend our analysis beyond age 85 using the es-

timated parameters of the continuous-time joint ATSM in conjunction with the

simulated mortality factors to generate future mortality rate simulations despite

our inability to observe empirical book population mortality data at these older age

ranges. In particular, we extend our basis risk analysis to retirement income portfo-

lios where members receive $1 of in�ation-indexed income per annum upon survival

from ages 66 to 90, re�ecting the age range considered by the LBRWG publications.

The graph of simulated and forward index values for the reference population

cohort initially aged 65 is presented in Figure 5.15. Figure 5.16 shows the associated

net swap payments made by the payer of the �xed leg to an index swap with a 24

year term. As with the case of swap cash�ows for a cohort whose promised payments

cease at age 85, the average swap payment remains e�ectively zero at all future years

when the age range is extended to 90.

The liability present value histogram for an annuity pool whose promised pay-

ments now extend to age 90 is presented in Figure 5.18. When these liabilities are

hedged using the in�ation-linked value-based longevity index swap instrument, the

liability present value once again shows a material reduction in volatility relative

to the unhedged portfolio. The computed LRR measure is 79.38%. Therefore, this

does represent a minor decrease relative to the analyses ceasing at age 85 (LRR mea-

sures of 82.47% and 83.42% when computed using the continuous and discrete-time
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Figure 5.15: Forward and simulated index values (joint ATSM extended to age
90)

mortality modelling frameworks, respectively). A possible explanation is that over

longer time horizons, demographic and sampling basis risk attain greater leverage to

materially impede hedging performance. However, given that the joint ATSM has

not been trained on ages beyond 85, the results presented in this sensitivity analysis

are subject to a degree of estimation risk.

In this chapter, we have demonstrated that the universal value-based longevity

index facilitates superior hedging outcomes relative to standard survival rate indices,

such as those examined by the LBRWG. Furthermore, we have used this index to

attribute the risks arising from retirement income portfolios into longevity risk,

interest rate risk and in�ation risk components. Finally, we have conducted a range

of sensitivity analyses on the hedging results, demonstrating that our �ndings can

vary among retirement income portfolios of di�ering size, but are robust across

di�erent age ranges and mortality modelling frameworks.
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Figure 5.16: Simulated swap payments (joint ATSM extended to age 90)

Figure 5.17: Liability present value histogram (joint ATSM extended to age 90,
100,000 lives)
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Figure 5.18: Hedged and unhedged liability present value distributions � in�ation-
linked value index (joint ATSM extended to age 90, 100,000 lives)
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Conclusion

This chapter concludes this thesis by reiterating our key research �ndings and con-

tributions to the literature. We also explain the theoretical and practical limitations

of our research methodology and identify potential avenues for future research to

extend our work.

6.1 Key Contributions

In this thesis, we have made a threefold contribution to the literature. These con-

tributions are motivated by the fundamental aim of supporting and accelerating

the practice of index-based longevity hedging for retirement income portfolio risk

exposures.

6.1.1 Construction of a Universal Value-Based Longevity In-

dex

We have constructed a universal value-based longevity index whose functionality is

illustrated with the aid of U.S. economic and mortality data. The index is de�ned

as the expected present value of a unit of longevity and in�ation-indexed income,

thereby incorporating both interest rate and in�ation risk unlike other value-based

longevity indices constructed in the literature. This contribution demonstrates how

the market can design an index that closely tracks the value of longevity-linked

liabilities � a critical requirement for the development of a viable, liquid longevity

risk transfer market.

Furthermore, the construction of the value-based longevity index has facili-

tated the attribution of risk arising from retirement income portfolios into distinct

longevity risk, interest rate risk and in�ation risk components.
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6.1.2 Decomposed Longevity Basis Risk Quanti�cation for

Hedge Comparisons

We have also drawn on key aspects of the LBRWG's longevity basis risk quanti�-

cation framework to demonstrate that hedges referencing the value-based longevity

index generate material reductions in basis risk relative to survivor swap instruments

based on standard mortality rate indices such as the Lifemetrics Index. Indeed, the

minimisation and robust quanti�cation of longevity basis risk represents a criti-

cal element in establishing the credibility of longevity-linked securities as viable risk

management instruments for retirement income providers. Additionally, the applica-

tion of the LBRWG's basis risk quanti�cation framework to a value-based longevity

index marks the �lling of another key gap in the literature.

6.1.3 Comparison of Continuous-Time and Discrete-TimeMulti-

Population Mortality Modelling Frameworks

Our third contribution is the comparison of the continuous-time multi-population

mortality modelling techniques introduced by Xu et al. (2017) to the discrete-time

M7-M5 multi-population mortality model advocated by the LBRWG. Despite the

di�ering approaches developed by these authors for modelling the relationship be-

tween the mortality patterns of multiple populations, our analysis indicates that the

two frameworks suggest relatively similar outcomes when hedging retirement income

portfolios by means of index-based swap instruments.

Ultimately by making these contributions to the literature, our research has the

potential to support the transition towards index-based longevity hedging. This is

of critical importance since index-based longevity hedging represents arguably the

most realistic prospect for a viable and liquid longevity risk transfer market, given

all of the complexities associated with indemnity-based longevity hedges.

6.2 Limitations and Areas for Future Research

6.2.1 Book Population Data

Our book population is constructed from a synthetic dataset under the assumption

that the aggregation of high income states su�ciently approximates the demograph-

ics of a typical retirement income portfolio. This approach has been opted for on

account of being unable to obtain time series deaths and exposure data for U.S.

annuity holders. However, this is clearly an imperfect method of obtaining book

population data. Future research that is able to engage authentic retirement in-

come portfolio mortality data would further enhance the credibility of index-based
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longevity hedging as a viable long-term solution for the management of longevity

risk.

Furthermore, given that longevity risk is most signi�cant and unpredictable at

the oldest ages, annuitant mortality datasets that extend beyond age 85 would

facilitate a more robust evaluation of value-based index hedging frameworks for

whole-of-life retirement income stream products.

6.2.2 Application to Realistic Retirement Income Portfolios

In our research methodology, the longevity hedging strategy considers a closed port-

folio where all members are aged x years at initial time t and are of the same gender.

That is, the fund consists of a single cohort of 65 year old males with no subsequent

additions to the scheme over time.

This is not re�ective of retirement income portfolios in practice which consist of

both males and females and a range of di�erent ages, while also remaining open for

new members to join. Such scenarios would require more complex hedging methods

involving multiple di�erent longevity swap contracts and more intensive hedge cali-

bration and optimisation techniques. Therefore, our research methodology is limited

in the sense that, although we demonstrate that the value-based longevity index is

materially superior to mortality rate indices for hedging purposes, the context in

which we conduct our analyses is a highly simpli�ed version of real-life retirement

income portfolios. There is scope for future research to extend the hedging frame-

work to book portfolios that are more analogous to those in practice.

6.2.3 Dynamic Hedging

The approach in this thesis represents a static hedging framework. That is, a strat-

egy that is constructed at the outset and does not require periodic rebalancing or

recalibration in response to evolving market conditions or mortality experience. Ngai

and Sherris (2011) note that static hedging is more appropriate and practical given

the lack of liquidity in the longevity risk transfer market. However, as the market

for longevity-linked instruments continues to develop and mature over time, there

is potential to further reduce longevity basis risk in a dynamic hedging framework

which o�ers greater �exibility. Therefore, the performance of index-based longevity

hedging using value-based longevity indices within a dynamic hedging framework re-

mains an area for future research. Furthermore, comparisons between the outcomes

of dynamic and static hedging strategies may also be of interest for retirement in-

come providers.
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6.2.4 Incorporation of the Longevity Risk Premium

We do not account for the market price of longevity risk in our research. In practice,

counterparties to longevity hedging transactions would require a risk premium to

compensate them for absorbing a retirement income provider's longevity risk ex-

posure. Although risk premiums do not a�ect the computation of the value-based

longevity index nor the degree of basis risk from associated hedges, the incorporation

of the the market price of longevity risk into the hedging framework would allow

retirement income providers to more informatively analyse the trade o� between the

lower cost of index-based longevity hedging against the residual basis risk exposure.

6.2.5 Further Sensitivity Analyses

There is scope to incorporate further sensitivity analyses into our research. For

example, Li et al. (2017) also model the potential impact of structural changes in

mortality, mortality jumps and alternate data �tting periods on the degree of risk

reduction achieved by standardised index-based longevity hedges. More broadly, one

could consider other national populations in addition to the U.S. in future works.
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